K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Một số bài toán hay về tâm nội tiếp:Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các...
Đọc tiếp

Một số bài toán hay về tâm nội tiếp:

Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.

Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.

Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.

Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.

1
14 tháng 3 2020

chị gisp em bài này

25 tháng 1 2019

A C B D P O M K L S T E F

Gọi E và F lần lượt là trung điểm của PA và PD. 

Ta thấy: \(\Delta\)PAK vuông tại K có trung tuyến KE => KE = 1/2.AP. Mà MF là đường trung bình \(\Delta\)PAD

Nên KE = MF (=1/2AP). Tương tự: FL = ME. Ta có: ^KEM = ^MFL (= ^PFM + Sđ(BC = ^PEM + Sđ(BC )

Suy ra: \(\Delta\)KEM = \(\Delta\)MFL (c.g.c) => KM = ML (Cạnh tương ứng) 

Ta thấy: ^KML = ^EMF - ^EMK - ^FML = 1800 - ^PFM - ^FLM - ^FML (^EMK = ^ FLM vì \(\Delta\)KEM = \(\Delta\)MFL)

= ^PFL = 2.^PDL = 2.^PAK => ^KML = 2.^PDL = 2.^PAK

Ta lại có: ^BDT = ^BDC - ^TDL = 1/2.^KML - (900 - ^DML) = 1/2.^KML - ^OML = ^OMK - 1/2.^KML

= ^OMK - ^PAK = ^SAK - ^PAK = ^CAS => ^BDT = ^CAS

Mặt khác: ^MTL = ^AOC = 2.^MDL (=Sđ(AC ) => \(\Delta\)MLT ~ \(\Delta\)ACO (g.g)

=> \(\frac{LT}{CO}=\frac{ML}{AC}\)=> LT. AC = ML.CO = MK.BO (Do ML = MK). Tương tự \(\Delta\)KSM ~ \(\Delta\)BOD

Từ đó; LT.AC = MK.BO = KS.BD => DT.AC = AS.DB => \(\frac{DT}{AS}=\frac{DB}{AC}\). Kết hợp với ^BDT = ^CAS (cmt)

=> \(\Delta\)CSA ~ \(\Delta\)BTD (c.g.c) => \(\frac{CS}{BT}=\frac{SA}{TD}=\frac{KS}{LT}\)=> KS.BT = CS.LT (đpcm).

17 tháng 4 2020

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Mục tiêu -500 sp mong giúp đỡ 

8 tháng 8 2019

A B C D I E F Q R S

Ta có ^SDI = ^SAI, ^SBI = ^SCI => \(\Delta\)DSB ~ \(\Delta\)ASC (g.g) => \(\Delta\)ASD ~ \(\Delta\)CSB (c.g.c)

Mà AD = BC nên tỉ số đồng dạng của 2 tam giác trên là 1, nói cách khác \(\Delta\)ASD = \(\Delta\)CSB

Do đó ^SBC = ^SDA và SB = SD. Kết hợp với BE = DF suy ra \(\Delta\)SEB = \(\Delta\)SFD (c.g.c)

Từ đây dễ suy ra \(\Delta\)ESF ~ \(\Delta\)BSD => ^SEF = ^SBD = ^SCI => Tứ giác CERS nội tiếp

=> ^SRQ = ^ECS = ^BCS = ^SIQ => Tứ giác QIRS nội tiếp (đpcm).

a

Đường tròn (O)(O), đường kính AHAH có \(\widehat{AMH}\)=90

HMABAMH^=90∘⇒HM⊥AB.

ΔAHBΔAHB vuông tại HH có HMAB

AH2=AB.AMHM⊥AB⇒AH2=AB.AM.

Chứng minh tương tự AH2=AC.ANAH2=AC.AN.

\(\Rightarrow\) AB.AM=AC.ANAB.AM=AC.AN.

B

Theo câu a ta có AB.AM=AC.AN

AMAC=ANABAB.AM=AC.AN⇒AMAC=ANAB.

Tam giác AMNAMN và tam giác ACBACB có \(\widehat{MAN}\)MAN^ chung và AMAC=ANABAMAC=ANAB.

ΔAMNΔACB⇒ΔAMN∼ΔACB (c.g.c).

\(\widehat{AMN}\)=\(\widehat{ACB}\)

c.

Tam giác ABCABC vuông tại AA có II là trung điểm của BC

IA=IB=ICBC⇒IA=IB=IC.

ΔIAC⇒ΔIAC cân tại I

\(\widehat{IAC}\)= \(\widehat{ICA}\)

Theo câu b ta có \(\widehat{AMN}\)= \(\widehat{ACB}\)
 

\(\widehat{IAC}\)= \(\widehat{AMN}\)

Mà \(\widehat{BAD}\)\(+\widehat{IAC}\)=90

\(\widehat{BAD}\)+ \(\widehat{AMN}\)
=90

\(\Rightarrow\widehat{ADM}\)
=90
BAD^+IAC^=90∘⇒BAD^+AMN^=90∘⇒ADM^=90∘
.

Ta chứng minh ΔABCΔABC vuông tại AA có AHBC

AH2=BH.CHAH⊥BC⇒AH2=BH.CH.

Mà BC=BH+CH

1AD=BH+CHBH.CH

1AD=1HB+1HC.

\(\Rightarrow\) BMNCBMNC là tứ giác nội tiếp.

10 tháng 4 2021

TRẢ HIỂU GÌ ?????????????????????