K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) Xét tam giác ABD có

M, N tương ứng là trung điểm của AB, AD

\( \Rightarrow \) MN là đường trung bình của tam giác ABD 

\( \Rightarrow \)  MN // BD mà BD \( \bot \) BC (\(\widehat {CBD} = {90^0}\))

\( \Rightarrow \) MN \( \bot \) BC.

b) Vì G, K tương ứng là trọng tâm của các tam giác ABC, ACD nên \(\frac{{CG}}{{CM}} = \frac{{CK}}{{CN}} = \frac{2}{3}\)

\( \Rightarrow \) GK // MN (Định lý Talet) mà MN \( \bot \) BC

\( \Rightarrow \) GK \( \bot \) BC.

25 tháng 8 2017

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Chứng minh tương tự, ta có tam giác AKD là tam giác cân tại K có KI là đường trung tuyến nên đồng thời là đường cao.

⇒ IK ⊥ AD (2)

Từ (1) và (2) suy ra; IK là đường vuông góc chung của hai đường thẳng AD và BC.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

31 tháng 3 2017

Giải bài 2 trang 104 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 2 trang 104 sgk Hình học 11 | Để học tốt Toán 11

23 tháng 3 2016

A B C D E H I F a b c

23 tháng 3 2016

Đặt \(\overrightarrow{DA}=\overrightarrow{a},\overrightarrow{DB}=\overrightarrow{b},\overrightarrow{DC}=\overrightarrow{c}\) và \(\left|\overrightarrow{a}\right|=\overrightarrow{a},\left|\overrightarrow{b}\right|=\overrightarrow{b},\left|\overrightarrow{c}\right|=\overrightarrow{c}\)

Đặt tiếp \(\widehat{BDC}=\alpha,\widehat{CDA}=\beta,\widehat{ADB}=\gamma\)

Từ giả thiết suy ra EIHF là hình bình hành. Nhưng EH = FI nên đó là hình chữ nhật

Suy ra : \(EF\perp EI\Rightarrow\overrightarrow{AB}.\overrightarrow{DC}=0\)

                             \(\Rightarrow\left(\overrightarrow{b}-\overrightarrow{a}\right).\overrightarrow{c}=0\)

                             \(\Rightarrow\overrightarrow{a}.\overrightarrow{c}=\overrightarrow{b}.\overrightarrow{c}\) (1)

Hoàn toàn tương tự cũng được 

 \(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}\) (2)

Từ (1) và (2) suy ra 

\(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}\)

\(\Leftrightarrow a.b\cos\gamma=b.c\cos\alpha=c.a\cos\beta\)

\(\Leftrightarrow\frac{a}{\cos\alpha}=\frac{b}{\cos\beta}=\frac{c}{\cos\gamma}\)

=> Điều cần chứng minh

5 tháng 8 2018

Giải bài 2 trang 104 sgk Hình học 11 | Để học tốt Toán 11

a) Tam giác ABC cân tại A có AI là đường trung tuyến nên đồng thời là đường cao:

AI ⊥ BC

+) Tương tự, tam giác BCD cân tại D có DI là đường trung tuyến nên đồng thời là đường cao:

DI ⊥ BC

+) Ta có: Giải bài tập Toán 11 | Giải Toán lớp 11

Giải bài 2 trang 104 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

a: Gọi E là trung điểm của AB

ΔABC đều nên CE vuông góc AB

ΔABD đều nên DE vuông góc AB

=>AB vuông góc (CDE)

=>AB vuông góc CD

b: Xét ΔCAB có CN/CB=CM/CA

nên MN//AB và MN=1/2AB

Xét ΔDAB có DQ/DA=DP/DB

nên PQ//AB và PQ/AB=DQ/DA=1/2

=>MN//PQ và MN=PQ

=>MNPQ là hình bình hành

Xét ΔADC có AQ/AD=AM/AC

nên QM//DC

=>QM vuông góc AB

=>QM vuông góc QP

=>MNPQ là hình chữ nhật