\(\frac{x}{y}=\frac{z}{t}\). Từ đó ta có tỉ lệ thức \...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2016

Ta có : x/y = z/t => x/z = y/t = 2x+3y/2z+3t = 2x-3y/2z-3t => a=2; b=3

10 tháng 3 2016

Từ \(\frac{x}{y}=\frac{z}{t}\Rightarrow\frac{x}{z}=\frac{y}{t}\)

\(\Rightarrow\frac{2x}{2z}=\frac{3y}{3t}\)

Theo t/c dãy tỉ số=nhau:

\(\frac{2x}{2z}=\frac{3y}{3t}=\frac{2x+3y}{2z+3t}=\frac{2x-3y}{2z-3t}\Leftrightarrow\frac{2x+3y}{2x-3y}=\frac{2z+3t}{2z-3t}\) (1)

Mà theo đề ta có: \(\frac{2x+3y}{2x-3y}=\frac{2z+3t}{az-bt}\) (20

từ (1);(2) \(\Rightarrow\frac{2z+3t}{2z-3t}=\frac{2z+3t}{az-bt}\Rightarrow2z-3t=az-bt\Rightarrow a=2;b=3\Rightarrow a+b=5\)

Vậy a+b=5

(*) bn sửa lại đề nhé:az-bt chứ ko phải là az+bt

24 tháng 10 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) thì \(a=bk,c=dk\).

\(\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\\ \frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\)

Do đó: \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)

24 tháng 10 2016

thanks, bạn giúp mik nhiều lần rồi ^^^^ cảm ơn

8 tháng 5 2018

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)(tc dãy tỉ số bằng nhau)

\(\Rightarrow\frac{a}{b}\cdot\frac{c}{d}=\frac{a+c}{b+d}\cdot\frac{a+c}{b+d}\Rightarrow\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

a)\(\frac{ab}{cd}=\frac{bk.b}{dk.b}=\frac{b^2}{d^2}\left(1\right)\)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)

từ\(\left(1\right)\)\(\left(2\right)\)\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)