Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D I K y x
a) Ta có AB = AC => ABC là tg cân ( cân tại A)
Xét \(\Delta ABD\)Và \(\Delta ACD\)
\(\widehat{ACD}=\widehat{ABD}\)( TAM GIÁC CÂN )
\(AC=AB\)
AD LÀ CẠNH CHUNG
=> 2 tam giác = nhau ( c.g.c )
b) Ta có Ay//BC
=> \(\widehat{yAC}=\widehat{ACB}\)( SO LE TRONG )
Mà \(\widehat{ACB}=\widehat{ABC}\)
=> \(\widehat{yAC}=\widehat{ABC}\)
c) Ta có tg ABC cân
=> AD là đg phân giác cũng là đường cao
=> \(AD\perp BC\)
MÀ \(Cx\perp BC\)
=> AD//Cx
d) Ta có Ay ( AK) //BC
Mà \(\widehat{ADC}=90^O\)
=> \(DA\perp Ay\)
Tứ giác AKCD là hình chữ nhâtk
mà theo tính chất của hình chữ nhật ( 2 đường chéo cắt nhau tại trung điểm của mỗi đường )
=> I là trung điểm của DK
a) Xét tam giác DBM và tam giác ABM có:
BM: là cạnh huyền (vừa cạnh chung)
^MDB = ^MAB = 90o
^DBM = ^ABM (giả thiết do BM là tia phân giác)
\(\Rightarrow\)\(\Delta\)DBM = \(\Delta\) ABM (cạnh huyền - góc nhọn)
\(\Rightarrow\) AB = BD
b) Xét \(\Delta\) ABC và \(\Delta\) DBE có:
AB = BD (CMT)
^B chung
^BAC = ^EDB = 90o
\(\Rightarrow\) \(\Delta\) ABC = \(\Delta\) DBE (cạnh góc vuông - góc nhọn kề cạnh ấy)
c) (không chắc nha). Từ đề bài suy ra ^NHM = ^NKM = 90o (kề bù với ^DHM = ^AKM = 90o, giả thiết)
Từ đó, ta có N cách đều hai tia MH, MK nên nằm trên đường phân ^HMK hay MN là tia phân giác ^HMK.
d)(không chắc luôn:v) Ta sẽ chứng minh BN là tia phân giác ^ABC.
Thật vậy, từ N, hạ NF vuông góc BC, hạ NG vuông góc với AB.
Đến đấy chịu, khi nào nghĩ ra tính tiếp.
a)Xét ∆ vuông BAM và ∆ vuông BDM ta có :
BM chung
ABM = DBM ( BM là phân giác)
=> ∆BAM = ∆BDM ( ch-gn)
=> BA = BD
AM = MD
b)Xét ∆ vuông ABC và ∆ vuông DBE ta có :
BA = BD
B chung
=> ∆ABC = ∆DBE (cgv-gn)
c) Xét ∆ vuông AKM và ∆ vuông DHM ta có :
AM = MD( cmt)
AMK = DMH ( đối đỉnh)
=> ∆AKM = ∆DHM (ch-gn)
=> MAK = HDM ( tương ứng)
Xét ∆AMN và ∆DNM ta có :
AM = MD
MN chung
MAK = HDM ( cmt)
=> ∆AMN = ∆DNM (c.g.c)
=> DNM = ANM ( tương ứng)
=> MN là phân giác AND
d) Vì MN là phân giác AND
=> M , N thẳng hàng (1)
Vì BM là phân giác ABC
=> B , M thẳng hàng (2)
Từ (1) và (2) => B , M , N thẳng hàng
ai tra loi giup mih vs