Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
B A C D E K
a: Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà I là trung điểm của BC
nên I là trung điểm của HD
a: Xét ΔABC có
BE là đường cao
CF là đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔBAC
Suy ra: AH\(\perp\)BC
Xét tứ giác BHCD có
BH//CD
CH//BD
Do đó: BHCD là hình bình hành
b: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HD
hay M,H,D thẳng hàng
Ta có: ΔEBC vuông tại E
mà EM là đường trung tuyến
nên EM=BC/2(1)
Ta có: ΔFBC vuông tại F
mà FM là đường trung tuyến
nên FM=BC/2(2)
Từ (1) và (2) suy ra ME=MF
hay ΔEMF cân tại M
1: Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
2: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của đường chéo BC
nên M là trung điểm của HD
hay H và D đối xứng nhau qua M
1: Xét tứ giác BHCD có
CH//BD
BH//CD
Do đó: BHCD là hình bình hành
2: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HD
hay H và D đối xứng nhau qua M
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
B A C H M N a)xét tứ giác AMNH có:
góc HMA= 90 độ
góc HNA = 90 độ
góc MAH= 90 độ ( tam giác ABC vuông tại A)
=> AMHN là hình chữ nhật
=> AH=MN( tính chất 2 đường chéo)
B A C H M N K I
tứ giác AMHN có \(\widehat{A}\)=\(\widehat{M}\)=\(\widehat{N}\)=90\(^o\)
nên AMHN là hcn => AH=MN
a) Tứ giác BHCDBHCD có:
BH//DC (do cùng ⊥AC
CH//BD (do cùng ⊥AB
⇒BHCD là hình bình hành (
b) Do BHCDà hình bình hành
gọi HD∩BC=I
I là trung điểm cạnh HD (1)
Gọi HE∩BC=G
ΔBHE có BGBG vừa là đường cao vừa là trung tuyến nên ΔBHE cân đỉnh B
⇒GH=GE
=>G là trung điểm cạnh HE(2)
Từ (1) và (2) ⇒IG là đường trung bình của ΔHEDΔ
⇒IG//ED⇒BC//ED (đpcm)