Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét \(\Delta\)ABC vuông tại A , ta có : AB2+AC2 = BC2 ( định lí Pytago)
\(\Rightarrow\)BC2=212+282=1225 \(\Rightarrow\)BC = 35 (cm)
Xét \(\Delta\)ABC , ta có: AD là tia phân giác góc BAC ( D\(\in\)BC)
\(\Rightarrow\)\(\frac{BD}{DC}=\frac{AB}{AC}\)\(\Rightarrow\frac{BD}{DC}=\frac{21}{28}=\frac{3}{4}\)\(\Rightarrow4BD=3DC\)
mà BD+DC=BC = 35\(\Rightarrow\)BD=35-DC
\(\Rightarrow\)4(35-DC)=3DC \(\Rightarrow\)140-4DC=3DC \(\Rightarrow\)140=7DC \(\Rightarrow\)DC=20 (cm)
\(\Rightarrow\)BD = 35 - 20 = 15 (cm)
b, Áp dụng hệ quả của định lí Ta lét trong tam giác ABC ,ta có:
\(\frac{DC}{BC}=\frac{DE}{AB}\) \(\Rightarrow\frac{20}{35}=\frac{DE}{21}\Rightarrow DE=\frac{20\times21}{35}=12\)(cm)
c, Ta có : DE//AB mà AB\(\perp\)AC \(\Rightarrow\)DE\(\perp\)AC
S\(\Delta\)ACD=\(\frac{DE\times AC}{2}=\frac{12\times28}{2}=168\)(cm2)
S\(\Delta\)ABC = \(\frac{AB\times AC}{2}=\frac{21\times28}{2}=294\)(cm2)
S\(\Delta\)ABD = S\(\Delta\)ABC - S\(\Delta\)ACD = 294 - 168 = 126 (cm2)
bạn ơi, cho mk hỏi tại sao AD là tia phân giác của góc BAC thì ra đc
như vậy ạ* Trong △ ABC, ta có:
AD là đường phân giác của ∠ (BAC)
Suy ra: (tính chất tia phân giác)
Suy ra:
Suy ra:
Suy ra:
Vậy DC = BC - DB = 28 - 10,5 = 17,5 (cm)
* Trong △ ABC, ta có: DE // AB
Suy ra: (Hệ quả định lí Ta-lét)
Vậy:
Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:
B C 2 = A B 2 + A C 2 = 21 2 + 28 2 = 1225
Suy ra: BC = 35 (cm)
Vì AD là đường phân giác của ∠ (BAC) nên:
(t/chất đường phân giác)
Suy ra:
Hay
Suy ra:
Vậy DC = BC – BD = 35 – 15 = 20cm
Trong ΔABC ta có: DE // AB
Suy ra: (Hệ quả định lí Ta-lét)
Suy ra:
a: BC=35cm
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{35}{7}=5\)
Do đó: BD=15(cm); CD=20(cm)
b: Xét ΔCAB có DE//AB
nên DE/AB=CD/CB
=>DE/21=4/7
=>DE=12(cm)