Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6:
a: Để A giao B khác rỗng thì 2m+2<=4 hoặc m-1>=-2
=>m<=1 hoặc m>=-1
b: Để A là tập con của B thì m-1>-2 và 4<=2m+2
=>m>-1 và 2m+2>=4
=>m>-1 và m>=1
=>m>=1
c: Để B là tập con của B thì m-1<-2 và 2m+2<=4
=>m<-1 và m<=1
=>m<-1
a, \(X\in\left\{a;b\right\},\left\{a;b;c\right\},\left\{a;b;d\right\},\left\{a;b;e\right\},\left\{a;c;d\right\},\left\{a;c;e\right\},\left\{a;d;e\right\},\left\{a;b;c;d\right\},\left\{a;b;c;e\right\},\left\{a;c;d;e\right\},\left\{a;b;c;d;e\right\}\)
b,
\(X=\left\{3;4;5\right\}\)
c,đề có sai hay sao ý ạ
\(B\subset A\Leftrightarrow\left\{{}\begin{matrix}m-7\ge-4\\m\le3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge3\\m\le3\end{matrix}\right.\)
\(\Leftrightarrow m=3\)
Để A có nghĩa \(\Rightarrow\frac{m+1}{2}\ge m-1\Rightarrow m\le3\)
a/ \(A\subset B\Leftrightarrow\left[{}\begin{matrix}\frac{m+1}{2}< -2\\m-1\ge2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< -5\\m\ge3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< -5\\m=3\end{matrix}\right.\)
b/ \(A\cap B=\varnothing\Leftrightarrow\left\{{}\begin{matrix}m-1\ge-2\\\frac{m+1}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow-1\le m< 3\)
1: A={-3;-2;-1;0;1;2;3}
B={2;-2;4;-4}
A giao B={2;-2}
A hợp B={-3;-2;-1;0;1;2;3;4;-4}
2: x thuộc A giao B
=>\(x=\left\{2;-2\right\}\)
Để \(A\subset B\Rightarrow\left\{{}\begin{matrix}2m-1\ge-1\\2m+3\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge0\\m\le-1\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
Để \(A\cap B=\varnothing\) \(\Rightarrow\left[{}\begin{matrix}2m+3\le-1\\2m-1\ge1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m\le-2\\m\ge1\end{matrix}\right.\)
Lời giải:
$A\cap B\cap C=A\cap (B\cap C)$
Để tập hợp trên khác rỗng thì trước hết $B\cap C\neq \varnothing$
Điều này xảy ra khi $2m>m\Leftrightarrow m>0$
Khi đó: $B\cap C=(m; 2m)$
$\Rightarrow A\cap B\cap C=((-3;-1)\cup (1;2))\cap (m; 2m)$
$=((-3;-1)\cap (m;2m))\cup ((1;2)\cap (m; 2m))$
$=(1;2)\cap (m; 2m)$ (do $m>0$)
Để $(1;2)\cap (m; 2m)\neq \varnothing$ thì:
\(\left\{\begin{matrix} 2m>1\\ m< 2\end{matrix}\right.\Leftrightarrow m\in (\frac{1}{2};2)\)
Vậy...........