K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2019

\(\hept{\begin{cases}sin^2a+c\text{os}^2a=1\\sina=2cosa\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}sina=\frac{2}{\sqrt{5}}\\c\text{os}a=\frac{1}{\sqrt{5}}\end{cases}}\)hoặc \(\orbr{\begin{cases}sina=-\frac{2}{\sqrt{5}}\\c\text{os}a=-\frac{1}{\sqrt{5}}\end{cases}}\)

Thế vô đi

2 tháng 2 2017

Mình bấm máy tính cho nhanh

ta có tan a =2

suy ra a=63,4349488

gán x=a= cái số ở trên

Sau đó Bấm biểu thức A mà thay a là x đó

ta được A=1

13 tháng 2 2017

khó

mình ko bt cách viết  phân số nên đường gạch ngang mờ mờ mà các bạn nhìn là phân số nhé

28 tháng 7 2017

\(1+\tan^2\alpha=\dfrac{1}{\cos^2a}\)

\(\Rightarrow\cos^2\alpha=\dfrac{1}{1+\tan^2\alpha}=\dfrac{1}{5}\)

\(2=\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}\)

\(\Rightarrow\sin\alpha=2\cos\alpha\)

\(A=\sin^2\alpha+2\sin\alpha\times\cos\alpha-3\cos^2\alpha\)

\(=4\cos^2\alpha+4\cos^2\alpha-3\cos^2\alpha\)

\(=5\cos^2\alpha\)

= 1

22 tháng 8 2020

\(1+tan^2a=\frac{1}{cos^2a}\)       

\(1+3^2=\frac{1}{cos^2a}\) 

\(10=\frac{1}{cos^2a}\)  

\(cos^2a=\frac{1}{10}\)          

\(cosa=\pm\sqrt{\frac{1}{10}}\) 

\(sin^2a+cos^2a=1\)   

\(sin^2a+\frac{1}{10}=1\)   

\(sin^2a=\frac{9}{10}\)   

\(sina=+\sqrt{\frac{9}{10}}\) 

Vì tan dương nên có hai trường hợp : 

TH1 : cả sin và cos cùng dương : 

\(A=\frac{sina\cdot cosa}{sin^2a-cos^2a}\) 

\(=\frac{\sqrt{\frac{9}{10}}\cdot\sqrt{\frac{1}{10}}}{\frac{9}{10}-\frac{1}{10}}\) 

\(=\frac{\frac{3}{10}}{\frac{8}{10}}\)    

\(=\frac{3}{8}\)   

TH2 : cả sin và cos cùng âm 

\(A=\frac{sina\cdot cosa}{sin^2a-cos^2a}\)                   

\(=\frac{-\sqrt{\frac{9}{10}}\cdot-\sqrt{\frac{1}{10}}}{\frac{9}{10}-\frac{1}{10}}\)                 

\(=\frac{\frac{3}{10}}{\frac{8}{10}}\)      

\(=\frac{3}{8}\)            

2 tháng 10 2015

chưa hk

2 tháng 10 2015

C = \(\frac{cosa-sina}{cosa+sina}=\frac{1-tana}{1+tana}=\frac{1-2}{1+2}=-\frac{1}{3}\)