K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2016

a) áp dụng đ/lý py ta go

=> BC2=AB2+AC2

      BC2 = 32 +62 = 9+36=45

=> BC=45

b) C/m AE=3cm(AE là trung điểm AC; AE=AC:2)

tg ABD = tg AED VÌ AB=AE (vì =3cm),góc BAD=EAD, AD chung

c) VÌ tg ABD=AED => góc B=E

tg BAC=EAM vì AE=BC, Â vuông, góc B=E

=> AM=AC=> tg MAC vuông cân

5 tháng 5 2021

mình giống bài trên nhưng thêm câu d là DC bằng 2.BD giúp mình với

 

6 tháng 5 2018


A B C D M

a) Xét 2 tam giác vuông ABD, ADE ta có:

\(\widehat{BAD}\)=\(\widehat{DAE}\)(GT)

\(AD\)CHUNG

Suy ra: tam giác ADB=tam giác ADE (ch-gn)

b) Bạn ơi, câu này ở đâu ra có A vậy bạn?

Bạn vào nhắn tin với mình để giải tiếp nha! ><

23 tháng 2 2015

4 tháng 12 2017

đố các bạn

bé kia chăn vịt khác thường

buộc đi cho được chẵn hàng mới ưa

hàng 2 xếp thấy chưa vừa,

hàng 3 xếp vẫn còn thừa 1 con,

hàng 4 xếp vẫn chưa tròn,

hàng 5 xếp thiếu 1 con mới đầy

xếp thành hàng 7, đẹp thay!

vịt bao nhiêu ? tính được ngay mới tài !

1 tháng 3 2015

a)-Gọi chân đường thẳng vuông góc kẻ từ trung điểm D tới phân gác góc BAC là G

=>AG vuông góc với DG => AG vuông góc với EF

-Xét tam giác AFE có AG vừa là phân giác vừa là đường cao => tam giác AFE là tam giác cân và cân tại A(đpcm)

=>góc AFE = góc AEF 

-BM //AC => AFE = BME (đồng vị) => BME = AEF => tam giác BME là tam giác cân và cân tại B(đpcm)

 

b) Xét tam giác CFD và tam giác MBD:

+) FDC = MDB (đối đỉnh)

+) CD=BD (D là trung điểm BC)

+) FCD = DBM ( so le trong - BM //AC)

=> tam giác CFD = tam giác MBD

=> CF = BM ( hai cạnh tương ứng)

- tam giác BME cân tại B (cmt) => BM=BE

=> CF=BE

 

c)-DO là đường trung trực của cạnh BC => BO=CO

-tam giác AFE cân tại A => AG vừa là đường cao vừa là đường trung trực từ đỉnh tới cạnh đáy FE. O nằm trên FE => FO=EO

-Xét tam giác OCF và tam giác OBE:

+) BO=CO (cmt)

+) FO=EO (cmt)

+) CF=BE (cmt)

=> tam giác OCF=tam giác OBE (đpcm)

8 tháng 5 2016

Gọi H là giao điểm của CF vs AB, K là trung điểm AH =&gt; DK&#x2F;&#x2F;GH =&gt; KH&#x2F;BH = DG&#x2F;BG (1) 
Mặt khác dễ thấy tg BCH cân tại B =&gt; BH = CB và theo tính chất phân giác ta có: 
AE&#x2F;CE = AB&#x2F;CB = (AH + BH)&#x2F;BH = AH&#x2F;BH + 1 &lt;=&gt; AH&#x2F;BH = AE&#x2F;CE - 1 = (AE - CE)&#x2F;CE = ((AD + DE) - (CD - DE))&#x2F;CE = 2DE&#x2F;CE (vì AD = CD) 
&lt;=&gt; 2KH&#x2F;BH = 2DE&#x2F;CE &lt;=&gt; KH&#x2F;BH = DE&#x2F;CE (2) 
Từ (1) và (2) =&gt; DE&#x2F;CE = DG&#x2F;BG =&gt; EG&#x2F;&#x2F;BC mà DF&#x2F;&#x2F;AB (do D; F là trung điểm của AC;CH) =&gt; DF đi qua trung điểm của BC =&gt; DF đi qua trung điểm EG (Ta lét(

a) vì tam giác ABC vuông tại A và có góc ABC = 600

=> tam giác ABC đều

=> AB = AC = BC

hihi!!!

Trịnh Tài Đức mk giải sai rùi sorry do đọc ko kĩ đề hì !!!!!!

756865

16 tháng 5 2018

a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E

có: BD là cạnh chung

góc ABD = góc EBD (gt)

\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)

b) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)

=> AB = EB = 6 cm ( 2 cạnh tương ứng)

=> EB = 6 cm

Xét tam giác ABC vuông tại A
có: \(AB^2+AC^2=BC^2\left(py-ta-go\right)\)

thay số: \(6^2+8^2=BC^2\)

          \(\Rightarrow BC^2=100\)

              \(\Rightarrow BC=10cm\)

mà \(E\in BC\)

=> EB + EC = BC

thay số: 6 + EC = 10

                  EC = 10 - 6

               => EC = 4 cm

c) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)

=> AD =  ED ( 2 cạnh tương ứng)

    AB = EB ( 2 cạnh tương ứng) (1)

Xét tam giác ADI vuông tại A và tam giác EDC vuông tại E

có: AD = ED ( chứng minh trên)

góc ADI = góc EDC ( đối đỉnh)

\(\Rightarrow\Delta ADI=\Delta EDC\left(cgv-gn\right)\)

=> AI = EC ( 2 cạnh tương ứng)(2)

Từ (1);(2) => AB + AI = EB + EC

               => BI = BC

              => tam giác BIC cân tại B ( định lí tam giác cân)

d) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)

=> AD = ED ( 2 cạnh tương ứng) (1)

Xét tam giác EDC vuông tại E

có: ED < DC ( định lí cạnh góc vuông, cạnh huyền) (2)

Từ (1);(2) => AD <DC

mk ko bít kẻ hình trên này!