Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) áp dụng đ/lý py ta go
=> BC2=AB2+AC2
BC2 = 32 +62 = 9+36=45
=> BC=√45
b) C/m AE=3cm(AE là trung điểm AC; AE=AC:2)
tg ABD = tg AED VÌ AB=AE (vì =3cm),góc BAD=EAD, AD chung
c) VÌ tg ABD=AED => góc B=E
tg BAC=EAM vì AE=BC, Â vuông, góc B=E
=> AM=AC=> tg MAC vuông cân
mình giống bài trên nhưng thêm câu d là DC bằng 2.BD giúp mình với
A B C D M
a) Xét 2 tam giác vuông ABD, ADE ta có:
\(\widehat{BAD}\)=\(\widehat{DAE}\)(GT)
\(AD\)CHUNG
Suy ra: tam giác ADB=tam giác ADE (ch-gn)
b) Bạn ơi, câu này ở đâu ra có A vậy bạn?
Bạn vào nhắn tin với mình để giải tiếp nha! ><
đố các bạn
bé kia chăn vịt khác thường
buộc đi cho được chẵn hàng mới ưa
hàng 2 xếp thấy chưa vừa,
hàng 3 xếp vẫn còn thừa 1 con,
hàng 4 xếp vẫn chưa tròn,
hàng 5 xếp thiếu 1 con mới đầy
xếp thành hàng 7, đẹp thay!
vịt bao nhiêu ? tính được ngay mới tài !
a)-Gọi chân đường thẳng vuông góc kẻ từ trung điểm D tới phân gác góc BAC là G
=>AG vuông góc với DG => AG vuông góc với EF
-Xét tam giác AFE có AG vừa là phân giác vừa là đường cao => tam giác AFE là tam giác cân và cân tại A(đpcm)
=>góc AFE = góc AEF
-BM //AC => AFE = BME (đồng vị) => BME = AEF => tam giác BME là tam giác cân và cân tại B(đpcm)
b) Xét tam giác CFD và tam giác MBD:
+) FDC = MDB (đối đỉnh)
+) CD=BD (D là trung điểm BC)
+) FCD = DBM ( so le trong - BM //AC)
=> tam giác CFD = tam giác MBD
=> CF = BM ( hai cạnh tương ứng)
- tam giác BME cân tại B (cmt) => BM=BE
=> CF=BE
c)-DO là đường trung trực của cạnh BC => BO=CO
-tam giác AFE cân tại A => AG vừa là đường cao vừa là đường trung trực từ đỉnh tới cạnh đáy FE. O nằm trên FE => FO=EO
-Xét tam giác OCF và tam giác OBE:
+) BO=CO (cmt)
+) FO=EO (cmt)
+) CF=BE (cmt)
=> tam giác OCF=tam giác OBE (đpcm)
Gọi H là giao điểm của CF vs AB, K là trung điểm AH => DK//GH => KH/BH = DG/BG (1)
Mặt khác dễ thấy tg BCH cân tại B => BH = CB và theo tính chất phân giác ta có:
AE/CE = AB/CB = (AH + BH)/BH = AH/BH + 1 <=> AH/BH = AE/CE - 1 = (AE - CE)/CE = ((AD + DE) - (CD - DE))/CE = 2DE/CE (vì AD = CD)
<=> 2KH/BH = 2DE/CE <=> KH/BH = DE/CE (2)
Từ (1) và (2) => DE/CE = DG/BG => EG//BC mà DF//AB (do D; F là trung điểm của AC;CH) => DF đi qua trung điểm của BC => DF đi qua trung điểm EG (Ta lét(
a) vì tam giác ABC vuông tại A và có góc ABC = 600
=> tam giác ABC đều
=> AB = AC = BC
hihi!!!
Trịnh Tài Đức mk giải sai rùi sorry do đọc ko kĩ đề hì !!!!!!
756865
a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E
có: BD là cạnh chung
góc ABD = góc EBD (gt)
\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)
b) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> AB = EB = 6 cm ( 2 cạnh tương ứng)
=> EB = 6 cm
Xét tam giác ABC vuông tại A
có: \(AB^2+AC^2=BC^2\left(py-ta-go\right)\)
thay số: \(6^2+8^2=BC^2\)
\(\Rightarrow BC^2=100\)
\(\Rightarrow BC=10cm\)
mà \(E\in BC\)
=> EB + EC = BC
thay số: 6 + EC = 10
EC = 10 - 6
=> EC = 4 cm
c) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> AD = ED ( 2 cạnh tương ứng)
AB = EB ( 2 cạnh tương ứng) (1)
Xét tam giác ADI vuông tại A và tam giác EDC vuông tại E
có: AD = ED ( chứng minh trên)
góc ADI = góc EDC ( đối đỉnh)
\(\Rightarrow\Delta ADI=\Delta EDC\left(cgv-gn\right)\)
=> AI = EC ( 2 cạnh tương ứng)(2)
Từ (1);(2) => AB + AI = EB + EC
=> BI = BC
=> tam giác BIC cân tại B ( định lí tam giác cân)
d) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> AD = ED ( 2 cạnh tương ứng) (1)
Xét tam giác EDC vuông tại E
có: ED < DC ( định lí cạnh góc vuông, cạnh huyền) (2)
Từ (1);(2) => AD <DC
mk ko bít kẻ hình trên này!