K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

13 tháng 9 2016

AB=21/(3+4)x3=9 cm

AC=21-9=12cm

Tự kẻ hình bạn nhé =)))

Áp dụng định lí Pitago vào tam giác ABC , có

AB^2+AC^2=BC^2

=>thay số vào, tính được BC=15cm

Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:

AB^2=BHxBC

=>BH=81/15=5.4cm

=>CH=15-5.4=9.6cm

AH^2=BHxCH=5.4x9.6=51.84cm

19 tháng 9 2018

Áp dụng định lý Pytago trong tam giác ABH vuông tại H. Ta có:

Trong tam giác vuông ABC vuông tại A có AH là đường cao

Áp dụng định lý Py-ta-go cho tam giác vuông ABC ta có:

Vậy AC = 7,5 (cm); BC =  12,5 (cm)

Đáp án cần chọn là: B

27 tháng 7 2017

B1: Gọi Tam giác ABC vuông tại A có AH là đ/cao chia cạnh huyền thành 2 đoạn HB và HC

AH2​=HB x HC =3x4=12

AH=căn 12 r tính mấy cạnh kia đi

B2: Ta có AB/3=AC/4 suy ra AB = 3AC/4

Thế vào cong thức Pytago Tam giác ABC tính máy cái kia

27 tháng 7 2017

Oh 2015 tuong ms dang chu :v

1 tháng 7 2019

a, AB = 7,5cm, AC = 10cm, BC = 12,5cm, HC = 8cm

b, AH = 3 3 cm;  P A B C = 18 + 6 3 c m ;  P A B H = 9 + 3 3 c m ;  P A C H = 9 + 9 3 c m

27 tháng 9 2021

bạn tự vẽ hình giúp mik nha

\(AH=\sqrt{AB^2-BH^2}\left(pytago\right)=\sqrt{6^2-3^2}=3\sqrt{3}\)

trong \(\Delta ABC\) vuông tại A có

\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{\left(3\sqrt{3}\right)^2}{3}=9\)

\(AC=\sqrt{AH^2+HC^2}=\sqrt{\left(3\sqrt{3}\right)^2+9^2}=6\sqrt{3}\)

chu vi \(\Delta ABC\)

=AB+BC+AC=6+12+6\(\sqrt{3}\)=28,4

chu vi \(\Delta ABH\)

=AB+BH+AH=6+3+3\(\sqrt{3}\)=14,2

chu vi \(\Delta AHC\)

=AH+HC+AC=3\(\sqrt{3}\)+9+\(6\sqrt{3}\)=24,6

10 tháng 7 2021

A B C 30o 9 H 18 D

a, ^B = ^A - ^C = 900 - 300 = 600 

\(\cos B=\frac{AB}{AC}\Rightarrow\frac{1}{2}=\frac{9}{AC}\Rightarrow AC=18\)cm 

Áp dụng định lí Pytago tam giác ABC vuông tại A 

\(BC^2=AB^2+AC^2=81+324=405\Rightarrow BC=9\sqrt{5}\)cm 

b, \(\cos B=\frac{BH}{AB}\Rightarrow\frac{1}{2}=\frac{BH}{9}\Rightarrow BH=\frac{9}{2}\)cm 

\(\sin B=\frac{AH}{AB}\Rightarrow\frac{\sqrt{3}}{2}=\frac{AH}{9}\Rightarrow AH=\frac{9\sqrt{3}}{2}\)cm 

c, Vì AD là đường phân giác nên : \(\frac{AB}{AC}=\frac{BD}{DC}\Rightarrow\frac{DC}{AC}=\frac{BD}{AB}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{DC}{AC}=\frac{BD}{AB}=\frac{DC+BD}{AC+AB}=\frac{9\sqrt{5}}{27}=\frac{\sqrt{5}}{3}\)

\(\Rightarrow BD=\frac{\sqrt{5}}{3}AB=\frac{\sqrt{5}}{3}.9=3\sqrt{5}\)cm 

\(\Rightarrow HD=BD-BH=3\sqrt{5}-\frac{9}{2}\)cm 

Áp dụng định lí tam giác AHD vuông tại H ta có : 

\(AD^2=AH^2+HD^2=\left(\frac{9\sqrt{3}}{2}\right)^2+\left(3\sqrt{5}-\frac{9}{2}\right)^2\)

tự giải nhé >< 

a. Giải tam giác ABC
B=60^0
AC=AB/tan30=9.√ 3
BC=AB/sin30=9.2 =18
S=AC.AB/2=81√ 3/2
b. Kẻ AH là đường cao, tính AH, BH
AH=2S/BC=81√ 3/18=9√ 3/2
BH=√ (AB^2-AH^2)=9√ (1-3/4)=9/2