Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2 bạn tự vẽ hình nha
xét tam giác vuông ABC và tam giác vuông DBA co chung goc BAC
==> tam giác ABC đồng dạng với tam giác DBA
==> AB/BC=BD/AB (1)
xét tam giác DBA có BF là phân giác ==> BD/AB=DF/AF(2)
xét tam giác vuông BAC có BE là phân giác ==> AB/BC=AE/EC (3)
từ (1) (2) (3) ta có DF/FA =AE/EC (vì cùng bằng AB/BC )
tính AD:
xét tam giác ABC . dùng định lý cos trong tam giác ta có (BC^2= AB^2 + AC^2- 2AB*AC*cosA )
có AC=AB nên ta sẽ tìm được AB và AC = 2 chia căn( 2 - căn 3)
mặt khác ta có B+C+A=180 nên có ABD = 15độ
áp dụng định lý cos trong tam giác BDC có ( DC ^2 = BD^2+BC^2 - 2BD*BC*cos BDC
áp dụng tiếp với tam giác ABD có : AD^2 = AB^2 + BD^2-2AB*BD*cosABD
ta tính DC và AD có CD = căn(....) = BD-2
AD =căn (...)= ....
sau đó có AD +DC = AC --> BD =?, sau đó thay vào AD ta sẽ tìm được
1)Cho tam giác ABC cân tại A. trên các cạnh bên AB,AC lấy theo thứ tự các diểm D và E sao cho AD=AE.
a)chứng minh rằng BDEC là hình thang cân.
b)tính các góc của hình thang cân dó , biết rằng Â=50o
bài làm
a) xét tamg giác ADE có:
AD = AE => tam giác ADE cân tại A
=> AED^ = ACB^
=> DE // BC
xét tứ giác DECB có
DE // BC
ABC^ = ACB^
=> DECB là hình thang cân
b) ABC^ = 1/2 (180 - 50) = 65 độ
ACB^ = ABC = 65 độ
DEC = 180 - 65 = 115 độ
EDB = EDC = 115 độ
cách 2
a, Tam giác ABC cân tại A => AB=AC ( 1 )
theo gt AD=AE ( 2 ).
từ 1 và 2 => BD = CE. (3)
lại có AD/AB = AE/AC => DE // BC (theo talet) 4
từ 3 & 4 => BDEC là hình thang cân.
b, tam giác ABC cân tại A => góc B=C= (180-50)/2 =65.
góc BDE = CED = 180 - 65 = 115
Hình vẽ ;
A B C D E 1 2 50 o 2 1
a, Chứng minh tứ giác BDEC là hình thang cân.
Xét tam giác ADE ta có :
AD=AE(gt)
=> tam giác ADE cân tại A
Xét tam giác ADE cân tại A và tam giác ABC cân tại A ta có
\(\widehat{A}\)chung
=> tam giác ADE đồng dạng với tam giác ABC
=>\(\widehat{D_1}=\widehat{B_1}\)
mà hai góc này ở vị trí đồng vị
=> DE//BC
=> tứ giác BDEC là hình thang
mà \(\widehat{B}=\widehat{C}\)(do tam giác ABC cân tại A )
=> tứ giác BDEC là hình thang cân
b, Tính các góc còn lại của hình thang cân .
Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=180^o-50^o=130^o\)
mà \(\widehat{B}=\widehat{C}\)( do tam giác ABC cân tại A)
=>\(\widehat{B}=\widehat{C}=\frac{130^o}{2}=65^o\)
Lại có : DE//BC(cmt)
=>\(\widehat{B}+\widehat{D_2}=180^o\Rightarrow\widehat{D_2}=180^o-\widehat{B}=180^o-65^o=115^o\)
mà \(\widehat{D_2}=\widehat{E_1}\)( do tứ giác BDEC là hình thang cân )
=>\(\widehat{E_1}=115^o\)
Nên nhớ hình vẽ chỉ mang tính minh họa cho bài làm vì vẽ trên máy tính nên ko được đẹp mấy bạn thông cảm nha .
Có j hk hiểu nhắn tin hỏi mk mình giải thích cho nhé .
a/Xét 2 tg ABD và tg EBD ,ta có : A^=E^ = 90*
BD chung
Góc ABD = góc EBD (gt)
=> tg ABD = tg EBD (ch- gn)
=>BA=BE
b/Vì BA=BE suy ra tg ABE cân tại B.
c/
xet tg ABD va tgEBD co
BD chung
goc ABD =goc DBE
2tam giac = nhau theo TH canh huyen goc nhon
=> BA= BE
=> tg BAE can
ma goc B= 60
=> tg BAD deu
c
D E A B C
a) Ta có AD = AE nên ∆ADE cân
Do đó =
Trong tam giác ADE có: + + =1800
Hay 2 = 1800 -
=
Tương tự trong tam giác cân ABC ta có =
Nên = là hai góc đồng vị.
Suy ra DE // BC
Do đó BDEC là hình thang.
Lại có =
Nên BDEC là hình thang cân.
b) Với =500
Ta được = = = = 650
=1800 - = 1800 - 650=1150
Mog mn zúp vs ạ :3
Đag bí bài này -,-
https://olm.vn/hoi-dap/detail/9955663993.html