Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔDEN vuông tại N và ΔDFM vuông tại M có
DE=DF(ΔDEF cân tại D)
\(\widehat{EDN}\) chung
Do đó: ΔDEN=ΔDFM(cạnh huyền-góc nhọn)
Suy ra: DN=DM(hai cạnh tương ứng)
Xét ΔDEF có
\(\dfrac{DM}{DE}=\dfrac{DN}{DF}\left(DM=DN;DE=DF\right)\)
nên MN//EF(Định lí Ta lét đảo)
Xét tứ giác EMNF có MN//EF(Cmt)
nên EMNF là hình thang
mà \(\widehat{MEF}=\widehat{NFE}\)(ΔDEF cân tại D)
nên EMNF là hình thang cân
b) Xét ΔDMH vuông tại M và ΔDNH vuông tại N có
DH chung
DM=DN(cmt)
Do đó: ΔDMH=ΔDNH(cạnh huyền-cạnh góc vuông)
c) Ta có: ΔDMH=ΔDNH(cmt)
nên HM=HN(hai cạnh tương ứng)
Ta có: DM=DN(cmt)
nên D nằm trên đường trung trực của MN(1)
Ta có: HM=HN(cmt)
nên H nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra DH là đường trung trực của MN
hay DH\(\perp\)MN
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Xét ΔABE và ΔACF có:
^A : góc chung
AB=AC(gt)
^ABE=^ACF(cmt)
=>ΔABE=ΔACF(g..c.g)
=> AE=AF
=>ΔAEF cân tại A
=> AFEˆ=180−Aˆ2AFE^=180−A^2 (1)
Có: ΔABC cân tại A(gt)
=> ABCˆ=180−Aˆ2ABC^=180−A^2 (2)
Từ (1)(2) suy ra:
^AFE=^ABC. MÀ hai góc mày ở vị trí đồng vị
=>FE//BC
Mà ^B=^C(gt)
=> tứ giác BFEC là ht cân
Xét ΔDEN vuông tại N và ΔDFM vuông tại M có
DE=DF(ΔDEF cân tại D)
ˆEDNEDN^ chung
Do đó: ΔDEN=ΔDFM(cạnh huyền-góc nhọn)
Suy ra: DN=DM(hai cạnh tương ứng)
Xét ΔDEF có
DMDE=DNDF(DM=DN;DE=DF)DMDE=DNDF(DM=DN;DE=DF)
nên MN//EF(Định lí Ta lét đảo)
Xét tứ giác EMNF có MN//EF(Cmt)
nên EMNF là hình thang
mà ˆMEF=ˆNFEMEF^=NFE^(ΔDEF cân tại D)
nên EMNF là hình thang cân
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
a)Xét tam giác AFC và tam giác AEB có :
góc A chung
AB = AC (gt)
góc B1 = góc C1 (gt)
=>tam giác AFC = tam giác AEC (g.c.g)
=>FC = EB (đcpcm)
b)Vì tam giác AFC = tam giác AEC (cmt)
=>AF=AE (hai cạnh tương ứng )
=>tam giác AFE cân tại A
=>góc AFE=180 độ - góc A : 2
mặt khác ta có : tam giác ABC cân tại A
=>góc B =180 độ - góc A : 2
=>góc B = góc AFE
góc B và góc AFE ở vị trí đồng vị
=>EF song song BC
=>FBCE là hình thang
=>FB = EC
mà góc B =góc C (gt)
=>FBCE là hình thang cân
Ta có :FE song song BC
=>góc EBC = góc FEB (SLT)
mà góc FBE = góc EBC (gt)
=>góc FBE = góc FEB
=>tam giác BFE cân tại F
=>EF=FB (hai cạnh tương ứng ) (đcpcm)
ta lại có :
FB=FC(cmt)
=>EC=FE (đcpcm)
Bn nhớ k cho mình nha!!!!!!!!