Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{BM}=\dfrac{\overrightarrow{BA}+\overrightarrow{BC}}{2}=\dfrac{\overrightarrow{BA}+\overrightarrow{BA}+\overrightarrow{AC}}{2}=-\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)
\(\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{BN}=\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}=\dfrac{3}{5}\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{AC}\)
\(\overrightarrow{BM}=-\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)
\(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AD}\)(D là trung điểm của BC) (1)
\(\overrightarrow{AM}+\overrightarrow{AN}=2\overrightarrow{AK}\)(K là trung điểm của MN) (2)
Lấy (1) trừ (2) có: \(\left(\overrightarrow{AB}+\overrightarrow{AC}\right)-\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=2\left(\overrightarrow{AD}-\overrightarrow{AK}\right)\)
⇔\(\dfrac{\left(\overrightarrow{AB}+\overrightarrow{AC}\right)-\left(\overrightarrow{AM}+\overrightarrow{AN}\right)}{2}\)=\(\overrightarrow{KD}\)
⇔\(\dfrac{\left(\overrightarrow{AB}+\overrightarrow{AC}\right)-\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\right)}{2}\)=\(\overrightarrow{KD}\)
⇔\(\dfrac{\overrightarrow{AB}+\overrightarrow{AC}-\dfrac{1}{2}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AC}}{2}\)=\(\overrightarrow{KD}\)
⇔\(\dfrac{\dfrac{1}{2}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}}{2}\)=\(\overrightarrow{KD}\)
⇔\(\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)=\(\overrightarrow{KD}\)
\(\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{BN}=-\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\)
\(=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)
a) \(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AN}=\dfrac{-1}{2}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
b) CG.CAN??
a: CI+BI=CB
=>\(\dfrac{3}{2}BI+BI=CB\)
=>\(\dfrac{5}{2}BI=CB\)
=>\(BI=\dfrac{2}{5}BC\)
=>\(CI=\dfrac{3}{2}\cdot BI=\dfrac{3}{2}\cdot\dfrac{2}{5}CB=\dfrac{3}{5}CB\)
\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}\)
\(=\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{BC}\)
\(=\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}\)
\(=\dfrac{3}{5}\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{AC}\)
JB=2/5JC mà J không nằm trong đoạn thẳng BC
nên B nằm giữa J và C
=>JB+BC=JC
=>\(BC+\dfrac{2}{5}JC=JC\)
=>\(BC=\dfrac{3}{5}JC\)
\(\dfrac{JB}{BC}=\dfrac{\dfrac{2}{5}JC}{\dfrac{3}{5}JC}=\dfrac{2}{5}:\dfrac{3}{5}=\dfrac{2}{3}\)
=>\(JB=\dfrac{2}{3}BC\)
\(\overrightarrow{AJ}=\overrightarrow{AB}+\overrightarrow{BJ}\)
\(=\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{BC}\)
\(=\overrightarrow{AB}-\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)
\(=\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{BA}-\dfrac{2}{3}\overrightarrow{AC}=\dfrac{5}{3}\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AC}\)
b:
Gọi giao điểm của AG với BC là M
G là trọng tâm của ΔABC
nên AG cắt BC tại trung điểm M của BC
=>\(AG=\dfrac{2}{3}AM\)
Xét ΔABC có AM là trung tuyến
nên \(\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
=>\(\overrightarrow{AG}=\dfrac{2}{3}\cdot\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
Đặt \(\overrightarrow{AG}=x\cdot\overrightarrow{AI}+y\cdot\overrightarrow{AJ}\)
\(\overrightarrow{AG}=\dfrac{1}{3}\cdot\overrightarrow{AB}+\dfrac{1}{3}\cdot\overrightarrow{AC};\overrightarrow{AI}=\dfrac{3}{5}\cdot\overrightarrow{AB}+\dfrac{2}{5}\cdot\overrightarrow{AC};\overrightarrow{AJ}=\dfrac{5}{3}\overrightarrow{AB}-\dfrac{2}{3}\cdot\overrightarrow{AC}\)
Ta có hệ phương trình sau:
\(\left\{{}\begin{matrix}\dfrac{1}{3}=x\cdot\dfrac{3}{5}+y\cdot\dfrac{5}{3}\\\dfrac{1}{3}=x\cdot\dfrac{2}{5}+y\cdot\dfrac{-2}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\cdot\dfrac{3}{5}+y\cdot\dfrac{5}{3}=\dfrac{1}{3}\\x\cdot\dfrac{2}{5}+y\cdot\dfrac{-2}{3}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+25y=5\\6x-10y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}18x+50y=10\\18x-30y=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}80y=-5\\6x-10y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-\dfrac{1}{16}\\6x=10y+5=-\dfrac{5}{8}+5=\dfrac{35}{8}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-\dfrac{1}{16}\\x=\dfrac{35}{48}\end{matrix}\right.\)
Vậy: \(\overrightarrow{AG}=\dfrac{35}{48}\overrightarrow{AI}-\dfrac{1}{16}\overrightarrow{AJ}\)
a) Theo bài ra ta có: \(\overrightarrow{AM}=\dfrac{1}{2}.\overrightarrow{AB}\)
\(\overrightarrow{AN}=3.\overrightarrow{NC}\) => \(\overrightarrow{AN}=3.\left(\overrightarrow{AC}-\overrightarrow{AN}\right)\) => \(4.\overrightarrow{AN}=3.\overrightarrow{AC}\)
=> \(\overrightarrow{AN}=\dfrac{3}{4}.\overrightarrow{AC}\)
=> \(\overrightarrow{MN}=\overrightarrow{AN}-\overrightarrow{AM}=\dfrac{3}{4}.\overrightarrow{AC}-\dfrac{1}{2}.\overrightarrow{AB}\)
b) Xét tam giác ABC, theo định lý Talet có: \(\dfrac{CN}{CA}=\dfrac{CP}{CB}=\dfrac{1}{3}\)
=> NP// AB => \(\dfrac{NP}{AB}=\dfrac{CN}{CA}=\dfrac{1}{4}\) => \(\overrightarrow{NP}=\dfrac{1}{4}.\overrightarrow{AB}\)
=> \(\overrightarrow{MP}=\overrightarrow{MN}+\overrightarrow{NP}=\dfrac{3}{4}.\overrightarrow{AC}-\dfrac{1}{2}.\overrightarrow{AB}+\dfrac{1}{4}.\overrightarrow{AB}=\dfrac{-1}{2}.\overrightarrow{AB}+\dfrac{3}{4}.\overrightarrow{AC}\)