K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2019

A B C H D K

Lấy K trên cạnh AC sao cho AK=AH.

+) Ta có: ^BAD = ^BAH + ^HAD = ^ACD + ^HAD = ^BDA = ^ACD + ^DAC => ^HAD = ^KAD

Do đó: \(\Delta\)AHD = \(\Delta\)AKD (c.g.c) => ^AHD = ^AKD => ^AKD = 900

=> \(\Delta\)DCK vuông tại K => CK < CD <=> AC - AK < BC - BD <=> AC - AH < BC - AB

<=> AB + AC < BC + AH (đpcm).

 +) \(\Delta\)AHD = \(\Delta\)AKD (cmt) => DH = DK. Mà DK < DC do \(\Delta\)DCK vuông K (cmt) => DH < DC (đpcm).

19 tháng 2 2019

Nguyễn Tất Đạt:Thanks anh very nhiều ah!

26 tháng 3 2019

A B C D H K

Bài này tớ nghĩ không cần điểm E đâu.v:))

Trên cạnh AC lấy điểm K sao cho AK=AH.

Do tam giác ABD cân tại B nên ^BAD=^BDA.

Ta có:\(\widehat{DAK}=\widehat{BAC}-\widehat{BAD}=90^0-\widehat{BAD}\)

\(\widehat{HAD}=\widehat{DHA}-\widehat{AHD}=90^0-\widehat{AHD}\)

\(\Rightarrow\widehat{DAK}=\widehat{HAD}\)

Xét \(\Delta\)HAD và \(\Delta\)KAD có:AD chung;^DAK=^HAD;AH=AK \(\Rightarrow\Delta HAD=\Delta KAD\left(c-g-c\right)\Rightarrow\widehat{AHD}=\widehat{AKD}=90^0\)

\(\Rightarrow\Delta CKD\) vuông tại K.\(\Rightarrow KD< DC\)(1)

Mà  \(\Delta\)HAD = \(\Delta\)KAD nên HD=KD.(2)

Từ (1) và (2) suy ra điều cần chứng minh_._