Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔAMC vuông tại A có
AB=AM
AC chung
=>ΔABC=ΔAMC
b: Xét ΔAKM vuông tại K và ΔAHB vuông tại H có
AM=AB
góc M=góc B
=>ΔAKM=ΔAHB
=>KM=HB
KM+CK=CM
HB+CH=CB
mà KM=HB và CM=CB
nên CK=CH
c: Xét ΔCMB có CK/CM=CH/CB
nên KH//MB
d: AC^2+HB^2
=AC^2+HB^2
AM^2+KC^2=AB^2+CH^2
AB^2-HB^2=AH^2
AC^2-CH^2=AH^2
=>AB^2-HB^2=AC^2-CH^2
=>AB^2+CH^2=AC^2+HB^2
=>AC^2+HB^2=AM^2+KC^2
a) Xét ΔABM và ΔCKM có:
MA=MC(gt)
MB=MK(gt)
góc BMA= góc CMK( 2 góc đối đỉnh )
=>ΔABM=ΔCKM( c.g.c)
=> góc MAB= góc MCK=90o
=>KC vuông góc với AC
b) Xét ΔBMC và ΔKMA có:
MA=MC(gt)
góc BMC= góc AMK( 2 góc đối đỉnh )
=>ΔBMC=ΔKMA(c.g.c)
=> góc MBC= góc MKA
=>BC//AK
a) Ta có: A1ˆ+A2ˆ+A3ˆ=180o( góc bẹt )
⇒A1ˆ+A3ˆ=90o( do A2ˆ=90o ) (1)
Trong ΔAKC có: A3ˆ+C1ˆ=90o( do Kˆ=90o) (2)
Từ (1) và (2) ⇒A1ˆ=C1ˆ
Xét ΔAHB,ΔCKA có:
A1ˆ=C1ˆ(cmt)
AB = AC ( gt )
H^=K^=90o
⇒ΔAHB=ΔCKA( c.huyền - g.nhọn )
⇒AH=CK( cạnh t/ứng ) ( đpcm )
b) Vì ΔAHB=ΔCKA
⇒BH=AK,AH=CK( cạnh t/ứng )
Ta có: HK=AK+AH=BH+CK(đpcm)
Vậy...
Chúc bạn học tốt
a)Xét ∆ABC và ∆AMC ta có:
AB = AM (GT)
^A1=^A2= 90 độ (GT)
AC là cạnh chung
Do đó: ∆ABC = ∆AMC (c.g.c)
Giúp dc mình cảm ơn ạ