\(\widehat{ABC}\)cắt AC tại M. Trên tia B...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm

a) Xét ∆ABM và ∆DBM có:

AB = BD ( cmt )

^ABM = ^DBM ( do BM phân giác )

Cạnh AM chung.

=> ∆ABM = ∆DBM ( c.g.c )

b) Vì ∆ABM = ∆DBM ( cmt )

=> ^BAM = ^BDM 

Mà ^BAM = 90°

=> ^BDM = 90°

=> MD vuông góc với BC.

d) Xét ∆BAC và ∆BDE có:

^BAC = ^BDE ( = 90° )

AB = BD ( gt )

^ABC chung 

=> ∆BAC = ∆BDE ( g.c.g )

=> BE = BC

=> ∆BEC cân tại B

=> ^BEC = ( 180° - ^ABC )/2.                  (1)

Ta có: BA = BD ( gt )

=> ∆BAD cân tại B

=> ^BAD = ( 180° - ^ABC )/2.             (2)

Từ (1) và (2) => ^BEC = ^BAD 

Mà hai góc này ở vị trí đồng vị

=> AD // CE ( đpcm )

7 tháng 3 2020

mik làm lại cho nó lq được ko?
a) ta xét t/gABM và t/gDBM ta có:

AB=DB (gt)

=>^ABM=^DBM

BM chung

=>t/gABM=t/gDBM (c.g.c)

b)Vì t/gABM=t/gDEM

=>AM=DM ( 2 cạnh tương ứng)

=>^MAD=^AMD=90o

=>MD_|_BC

c)Vì t/gABM=t/gDEM (đối đỉnh)

=>t/gAME=t/gDMC(cgv-gn)

=>ME=MC

=>t/gMEC cân tại M

=>^MEC=^MCE

Mà trong t/gMEC ta thấy:

^MEC+^MDA+^DAM=^MEC+^CEM+EMC

mà ^EMC=^AMD ( 2 góc đối đỉnh)

=>^MAD+^MDA=^MEC+^EMC

=>^MAD=^MCE ( so le)

=>AD//CE

=>đpcm.

7 tháng 3 2020

A B C D E M

a) tam giác ABM=tam giác DBM (c.g.c) (1) suy ra AM=MD

b) Từ (1) suy ra góc BAM = góc BDM

mà góc BAM = 900

suy ra góc BDM = 900

suy ra MD vuông góc với BC tại D

c) Vì AB=BD suy ra tam giác ABD cân tại B

mà BM là phân giác của góc ABD

suy ra BM  là phân giác đồng thời là đường cao của tam giác ABD

suy ra BM vuông góc với AD (3)

Xét tam giác AME và tam giác DMC

có góc MAE=góc MDC=900

AM=MD ( CMT)

góc AME=góc DMC ( đối đỉnh)

suy ra tam giác AME = tam giác DMC (g.c.g)

suy ra AE=DC

mà AB+AE=BE, BD+DC=BC lại có AB=BD

suy ra BC = BE suy ra tam giác EBC cân tại B

mà BM là phân giác của góc EBC

suy ra BM  là phân giác đồng thời là đường cao của tam giác EBC

suy ra BM vuông góc với CE tại M (4)

Từ (3) và (4) suy ra AD//CE

1 tháng 3 2019

\(B=\frac{1}{4}\left(a^2b^2\right)2ab\) tại a = 1, b = |2|

\(B=\frac{1}{4}\left(1^2.2^2\right)2.1.2\)

\(B=\frac{1}{4}.4.2.1.2\)

\(B=4\)

Có bạn nài làm đc ko v

12 tháng 1 2021

too easy

NM
12 tháng 1 2021

B A D C E H K

câu a ta có AB=BE, BD chung và góc ABD=BDE do BD là phân giác của ABC

do đó hai tam giác ABD và EBD bằng nhau theo trường hợp cạnh góc cạnh,

b, do từ kết quả câu a ta có DEB=DA B=90 độ do đó DE vuông với EB , mà AH vuông góc với EB nên

DE //AH.

c. ta có \(KB=KA+AB=EC+EB=BC\)

mà AB=BE và góc B chung 

do đó hai tam giác ABC và EBK bằng nhau theo trường hợp cạnh góc cạnh.

. dễ thấy AM và AB là tia phân giác của hai góc kề bù

do đó chúng vuông góc với nhau

nên tam giác DBM vuông tại D do đó \(\widehat{ABD}+\widehat{AMD}=90^0\)

1) Cho tam giác ABC vuông tại A, vẽ tia phân giác của \(\widehat{ABC}\)cắt AC tại D. Trên cạnh BC lấy M sao cho BA = BM.a) Chứng minh: Tam giác BAD = Tam giác BMDb) Chứng minh: DM vuông góc BCc) Trên nửa mặt phẳng bờ AB không chứa C vẽ tia song song với CA. Trên tia Bx lấy điểm K sao cho BK = AC. Chứng minh: AK vuông góc DMd) Trên tia BA lấy điểm N sao cho BN = BC. Chứng minh: 3 điểm M, D, N thẳng hàng.2) Cho tam giác ABC...
Đọc tiếp

1) Cho tam giác ABC vuông tại A, vẽ tia phân giác của \(\widehat{ABC}\)cắt AC tại D. Trên cạnh BC lấy M sao cho BA = BM.

a) Chứng minh: Tam giác BAD = Tam giác BMD

b) Chứng minh: DM vuông góc BC

c) Trên nửa mặt phẳng bờ AB không chứa C vẽ tia song song với CA. Trên tia Bx lấy điểm K sao cho BK = AC. Chứng minh: AK vuông góc DM

d) Trên tia BA lấy điểm N sao cho BN = BC. Chứng minh: 3 điểm M, D, N thẳng hàng.

2) Cho tam giác ABC có AB < AC. Trên tia AC lấy E sao cho: AE = AB. Gọi H là trung điểm của BE.

a) Chứng minh: AH là tia phân giác của \(\widehat{A}\)

b) Gọi D là giao của AH và BC; Chứng minh: BD = DE

c) Qua E vẽ đường thẳng song song với AD cắt BC tại M. Tính số đo \(\widehat{BEM}\)

d) Trên tia đối của tia BA lấy N sao cho: BN = CE. Chứng minh: 3 điểm E, D, N thẳng hàng

Mong các bạn giúp đỡ!

0
  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC...
Đọc tiếp

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD  (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB,  EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC

1

a: AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có

BM chung

BA=BD

=>ΔBAM=ΔBDM

=>MA=MD

c: Xet ΔMAN vuông tại Avà ΔMDC vuông tại D có

MA=MD

góc AMN=góc DMC

=>ΔMAN=ΔMDC

=>MN=MC

d: BN=BC

MN=MC

=>BM là trung trực của NC

=>B,M,I thẳng hàng