Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong ΔABM, ta có ∠(BAM) = 90o
Suy ra: AB < BM (trong tam giác vuông cạnh huyền lớn nhất)
Mà BM = BE + EM = BF - MF
Suy ra: AB < BE + EM
AB < BF - FM
Suy ra:AB + AB < BE + ME + BF - MF (1)
Xét hai tam giác vuông AEM và CFM, ta có:
∠(AEM) = ∠(CFM) = 90o
AM = CM (gt)
∠(AME) = ∠(CMF) (đối đỉnh)
Suy ra: ΔAEM = ΔCFM (cạnh huyền - góc nhọn)
Suy ra: ME = MF (2)
Từ (1) và (2) suy ra: AB + AB < BE + BF
Suy ra: 2AB < BE + BF
Vậy AB < (BE + BF) / 2 .
định lý thường nói : nếu trong 1 tam giác có tông độ dài hai cạnh luôn luôn lớn hơn cạnh còn lại
bạn dựa vào định lý đó để chứng minh
thanks
A B C E F M
\(\Delta ABM\) vuông tại \(A\Rightarrow AB< BM\)
Do đó: \(AB< BE+ME\) __(1)__
Và \(AB< BF-MF\) __(2)__
\(\Delta MAE=\Delta MCF\) ( cạnh huyền - góc nhọn )
\(\Rightarrow ME=MF\) __(3)__
Từ (1),(2),(3) suy ra:
\(AB+AB< BE+BF\)
Do đó
\(2AB< BE+BF\) nên \(AB< \dfrac{BE+BF}{2}\)
\(\frac{ }{\hept{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}^{ }^{ }^2_{ }\cos\Leftarrow\gamma}\)
cho tam giác abc vuông tại A, M là trung điểm của AC gọi E và F là chân các đường vuông góc từ AC đến đường thẳng BM chứng minh rằng AB < BE + BF chia cho 2