Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(AN\cdot AC=AH^2\)
\(AC^2-HC^2=AH^2\)
Do đó: \(AN\cdot AC=AC^2-HC^2\)
BẠN TỰ VẼ HÌNH NHA
trong tam giac vuong ABC co \(AB^2=BH.BC\Rightarrow BC=\frac{12^2}{6}=24\)
ap dung dl pitago vao tam giac vuong ABC \(AB^2+AC^2=BC^2\Rightarrow AC^2=24^2-12^2\Rightarrow AC=12\sqrt{3}\)
lai co \(AC^2=CH.BC\Rightarrow CH=\frac{\left(12\sqrt{3}\right)^2}{24}=18\)
a: BC=căn 12^2+16^2=20cm
Xét ΔABC vuông tại A có sin C=AB/BC=3/5
=>góc C=37 độ
=>góc B=53 độ
b: AM=12*16/20=9,6cm
BM=AB^2/BC=7,2cm
c: ΔAMB vuông tại M có ME là đường cao
nên AE*AB=AM^2
=>AE*AB=AC^2-MC^2
\(a,BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\\ HTL:\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ b,AM=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\left(trung.tuyến.ứng.cạnh.huyền\right)\\ \Rightarrow HM=\sqrt{AM^2-AH^2}=\dfrac{119}{26}\left(cm\right)\\ \Rightarrow S_{AHM}=\dfrac{1}{2}AH\cdot HM=\dfrac{1}{2}\cdot\dfrac{60}{13}\cdot\dfrac{119}{26}=\dfrac{1785}{169}\left(cm^2\right)\)
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=20^2-12^2=256\)
=>AC=16(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot20=12\cdot16=192\)
=>AH=9,6(cm)
Xét ΔABC vuông tại A có
\(sinABC=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{ABC}\simeq53^0\)
b: Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\)(1) và \(AN\cdot NC=HN^2\)
ΔAHC vuông tại H
=>\(HA^2+HC^2=AC^2\)
=>\(AH^2=AC^2-HC^2\left(2\right)\)
Từ (1) và (2) suy ra \(AN\cdot AC=AC^2-HC^2\)
c: Xét tứ giác AMHN có \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
nên AMHN là hình chữ nhật
=>AH=MN
Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot MB=HM^2\)
\(AM\cdot AB+AN\cdot NC\)
\(=HM^2+HN^2\)
\(=MN^2=AH^2\)
d: \(\dfrac{BM}{CN}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)
\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}\)
\(=\left(\dfrac{AB^2}{BC}:\dfrac{AC^2}{BC}\right)^2\cdot\dfrac{AC}{AB}\)
\(=\left(\dfrac{AB}{AC}\right)^4\cdot\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3=tan^3C\)