Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng HTL:
\(\dfrac{1}{AH^2}=\dfrac{1}{51,84}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{144}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{1}{AC^2}=\dfrac{1}{81}\Rightarrow AC=9\left(cm\right)\)
Áp dụng PTG \(BC=\sqrt{BA^2+AC^2}=15\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=9,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=5,4\left(cm\right)\end{matrix}\right.\)
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
Xét tam giác ABC vuông tại A ta có:
\(AB^2=BC\cdot BH\)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{\left(\dfrac{2}{3}\right)^2}{12}=\dfrac{1}{27}\left(cm\right)\)
Mà: \(BC=CH+BH\)
\(\Rightarrow CH=12-\dfrac{1}{27}=\dfrac{323}{27}\left(cm\right)\)
\(AC^2=BC\cdot CH\)
\(\Rightarrow AC=\sqrt{BC\cdot CH}=\sqrt{12\cdot\dfrac{323}{27}}=\dfrac{2\sqrt{323}}{3}\left(cm\right)\)
Mà: \(AH\cdot BC=AB\cdot AC\)
\(\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{\dfrac{2}{3}\cdot\dfrac{2\sqrt{323}}{3}}{12}=\dfrac{\sqrt{323}}{27}\left(cm\right)\)
BẠN TỰ VẼ HÌNH NHA
trong tam giac vuong ABC co \(AB^2=BH.BC\Rightarrow BC=\frac{12^2}{6}=24\)
ap dung dl pitago vao tam giac vuong ABC \(AB^2+AC^2=BC^2\Rightarrow AC^2=24^2-12^2\Rightarrow AC=12\sqrt{3}\)
lai co \(AC^2=CH.BC\Rightarrow CH=\frac{\left(12\sqrt{3}\right)^2}{24}=18\)
Xét tan giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH^2=CH.BH\Rightarrow BH=\frac{144}{16}=9\)cm
-> CH + BH = BC = 9 + 16 = 25 cm
* Áp dụng hệ thức : \(AB^2=BC.BH=25.9\Rightarrow AB=5.3=15\)cm
* Áp dụng hệ thức : \(AC^2=CH.BC=25.16\Rightarrow AC=5.4=20\)cm