Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A G K I E B D C H
Ta có:
\(AB=AC\)
\(\Rightarrow\Delta ABC\)là tam giác cân
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Do \(\widehat{ACB}\)và \(\widehat{KCE}\)là 2 góc đối đỉnh
\(\Rightarrow\widehat{ACB}=\widehat{KCE}\)
Xét \(\Delta BDH\)(vuông) và \(\Delta CEK\)(vuông) có:
\(BD=CE\)
\(\widehat{DBH}=\widehat{ECK}\left(=\widehat{ACB}\right)\)
\(\Rightarrow\Delta BDH=\Delta CEK\left(ch.gn\right)\)
\(\Rightarrow HD=EK\)
Ta có:
\(\widehat{DIH}=\widehat{KIE}\)(đối đỉnh)
\(\widehat{DHI}=\widehat{EKI}\)(=90O)
\(\Rightarrow\widehat{HDI}=\widehat{KEI}\)
Xét \(\Delta DHI\)và \(\Delta EKI\)có:
\(\widehat{DHI}=\widehat{EKI}\)
\(HD=EK\)
\(\widehat{HDI}=\widehat{KEI}\)
\(\Rightarrow\Delta DHI=\Delta EKI\left(g.c.g\right)\)
\(\Rightarrow DI=IE\)
Do \(\hept{\begin{cases}DI< DE\\DI=IE\end{cases}}\)
Vậy I là trung điểm DE
a) Vì A là góc vuông
=> A1 = A2 = A / 2= 90* / 2= 45*
Vì D1 = A2 = 45* ( ở vị trí so le trong)
=> AB // DK
A B C H I D K E
#)Giải :
a)Xét \(\Delta AID\)và \(\Delta AIH\)có :
ID = IH ( I là trung điểm của DH )
IA là cạnh chung
=> \(\Delta AID=\Delta AIH\) ( cạnh góc vuông - cạnh góc vuông )
a/ Xét tam giác ABD và tam giác ACE có:
AB=AC( tam giác ABC cân tại A)
Góc B=góc C(tam giác ABC cân tại A)
BD=CE(gt)
=> Tam giác ABD= tam giác ACE
b/ Xét tam giác HDB và tam giác KEC có:
BD=EC(gt)
Góc B=góc C(tam giác ABC cân tại A)
Góc DHB=góc EKC=90o
=> tam giác HDB=tam giác KEC(ch-gn)
=> HD=KE(cạnh tương ứng)
c/ Ta có: tam giác HDB=tam giác KEC(chứng minh trên)
=> Góc KEC=góc HDB(góc tương ứng)
=> Góc HDB= góc EDO(đối đỉnh)
Góc KEC=góc DEO(đối đỉnh)
Suy ra góc DEO=góc EDO
Vậy tam giác OED là tam giác cân và cân tại O
Phú mệt quá ai tik dùm với!!!!!!!!!!!!!!!!!!!!!
c/ Do tam giác HDB=tam giác KEC nên BH=CK(cạnh tương ứng)
Mà AH=AB-BH
AK=AC-CK
Vì AB=AC nên AH=AK
Xét tam giác AHO và tam giác AKO có:
AO chung
Góc AHO=góc AKO=90o
AH=AK(chứng minh trên)
=> tam giác AHO=tam giác AKO(ch-cgv)
=> Góc HAO=góc KAO(góc tương ứng)
Vậy AO là tia phân giác góc HAK