K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)

\(MP=\sqrt{10^2-6^2}=8\left(cm\right)\)

Xet ΔABC vuông tại A và ΔMNP vuông tại M co

AB/MN=AC/MP

=>ΔABC đồng dạng vơi ΔMNP

b: ΔABC đồng dạng vơi ΔMNP

=>goc A=góc M; góc B=góc N; gócC=góc P

23 tháng 3 2016

Áp dụng định lý Py-ta-go đối với ▲MPQ vuông tại M ta có:

\(MQ^2=PQ^2-MP^2\)

\(\Rightarrow MQ=10^2-6^2=100-36=64\)

\(\Rightarrow MQ=8\left(cm\right)\)

Xét ▲ABC và ▲MPQ ta có :

\(\frac{AB}{MP}=\frac{AC}{MQ}=\frac{1}{2}\left(\frac{3}{6}=\frac{4}{8}\right)\)

<A=<M=90

Do đó hai tam giác đồng dạng

23 tháng 3 2016

- Đâu cần phiền phức vậy! Có hai góc A và M cùng =90 độ lập tỉ số 2 cặp cạnh đã cho độ dài => 2 tỉ số bằng nhau => Tam giác đồng dạng trường hợp c.g.c .

10 tháng 1 2022

a, xét tam giá HNM và tam giác MNP có chung :

góc MNP

cạnh MN 

cạnh NI của tam giác HNM nằm trên cạnh NP của tam giác MNP 

=> tam giác HNM đồng dạng MNP (c-g-c)

b,

áp dụng đ/l pytago vào tam giác vuông MNP :

=>NP=15cm 

MH.NP =NM.MP

MH.15=9.12

=>MH=7,2cm

áp dụng đl pytago vào tam giác vuông MNH ( NHM = 90\(^o\)):

=>NH=5,4cm

HP=NP-NH

HP=15-5,4=9,6cm

c, 

vì MI là phân giác của góc M 

=> MI là trung tuyến của tam giác MNP nên:

NI=IP 

mà NI+IP=15cm

=> NI=IP =7,5cm

a: Xét ΔMNP vuông tại M và ΔHIP vuông tại H có

góc P chung

=>ΔMNP đồng dạng với ΔHIP

b: IN/IP=MN/MP=3/4

=>IN/3=IP/4=(IN+IP)/(3+4)=5/7

=>IN=15/7cm; IP=20/7cm

IH//MN

=>IH/MN=PI/PN

=>IH/3=20/7:5=4/7

=>IH=12/7cm

a: Xét ΔMBN vuông tại M và ΔKBP vuông tại K có

góc MBN=góc KBP

=>ΔMBN đồng dạg với ΔKBP

b:

MP=căn NP^2-MN^2=4cm
MB=BP=4/2=2cm

NB=căn 2^2+3^2=căn 13(cm)

 ΔMBN đồng dạng với ΔKBP

=>MN/PK=BN/BP

=>3/PK=căn 13/2

=>PK=6/căn 13(cm)

9 tháng 5 2017

A) Xét   \(\Delta HBA\) và  \(\Delta ABC\) có :

\(\widehat{B}\) chung     ;     \(\widehat{BAC}=\widehat{BHA}=90\)  độ

\(\Leftrightarrow\Delta HBA\infty\Delta ABC\left(g.g\right)\)

B)  Xét \(\Delta ABE\) và \(\Delta ACB\) có : 

       \(\widehat{A}\)   chung

      \(\widehat{ABE}=\widehat{BCA}\)( Do BE là phân giác của góc B , mà   \(\widehat{B}=2\widehat{C}\))

\(\Leftrightarrow\Delta ABE\infty\Delta ACB\left(g.g\right)\)

Ta có tỉ lệ :  \(\frac{AB}{AC}=\frac{AE}{AB}\)\(\Leftrightarrow AB^2=AE\cdot AC\left(dpcm\right)\)

C)  ta có tỉ lệ :  \(\frac{HB}{AB}=\frac{AB}{BC}\)\(\Leftrightarrow HB=\frac{AB^2}{BC}=\frac{9}{6}=1,5\left(cm\right)\)

    Xét   \(\Delta BHD\) và  \(\Delta BAE\) có :

              \(\widehat{BHD}=\widehat{BAE}=90\)độ

              \(\widehat{ABE}=\widehat{EDH}\)( do BE là phân giác của góc B )

    \(\Leftrightarrow\Delta BHD\infty\Delta BAE\left(g.g\right)\)

Ta có tỉ lệ : \(\frac{BH}{AB}=\frac{HD}{AE}=\frac{BD}{BE}\)

    \(\Rightarrow\frac{S_{BHD}}{S_{BAE}}=\left(\frac{BH}{AB}\right)^2=\left(\frac{1,5}{3}\right)^2=\frac{1}{4}\)

BÀI NÀY MK TỪNG LÀM RÙI NÊN YÊN TÂM !!! NẾU THẤY ĐÚNG THÌ TK NKA !!!

9 tháng 5 2017

Hàng thứ 5 từ dười đếm lên bạn sửa lại giúp mk là   \(\widehat{ABE}=\widehat{EBH}\)mới đúng !!! thông cảm mk bị cận