K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2021

e) \(AH\perp BC\)(giả thiết).

\(\Rightarrow\Delta HAB\)vuông tại H.

\(\Rightarrow S_{HAB}=\frac{AH.BH}{2}=4,8.\frac{30}{14}=\frac{144}{14}=\frac{72}{7}\left(cm^2\right)\)

Xét \(\Delta ABC\)có phân giác BD (giả thiết).

\(\Rightarrow\frac{AD}{CD}=\frac{AB}{BC}\)(tính chất).

\(\Rightarrow\frac{AD}{CD+AD}=\frac{AB}{BC+AB}\)(tính chất của tỉ lệ thức).

\(\Rightarrow\frac{AD}{AC}=\frac{AB}{BC+AB}\)

\(\Rightarrow\frac{AD}{8}=\frac{6}{10+6}=\frac{6}{16}=\frac{3}{8}\)(thay số).

\(\Rightarrow AD=\frac{3}{8}.8=3\left(cm\right)\)

Vì \(\Delta ABC\)vuông tại A (giả thiết).

\(\Rightarrow\widehat{CAB}=90^0\Rightarrow\widehat{DAB}=90^0\)

\(\Rightarrow\Delta ADB\)vuông tại A.

\(\Rightarrow S_{ADB}=\frac{AD.AB}{2}=\frac{3.6}{2}=9\left(cm^2\right)\)

Ta có: \(S_{ABC}=\frac{AB.AC}{2}\)(theo câu a))

\(\Rightarrow S_{ABC}=\frac{6.8}{2}=\frac{48}{2}=24\left(cm^2\right)\)

Lại có: \(S_{ABD}+S_{BCD}=S_{ABC}\)

\(\Rightarrow9+S_{BCD}=24\)(thay số).

\(\Rightarrow S_{BCD}=24-9=15\left(cm^2\right)\)

Vậy \(S_{HAB}=\frac{72}{7}cm^2;S_{BCD}=15cm^2\)

28 tháng 3 2021

A B C H E D I

8 tháng 4 2016

c) Xét tam giác AHD vuông tại H có AD là cạnh huyền, AH là cạnh góc vuông  \(\Rightarrow\) AH < AD    (1)

Xét tam giác ADC có góc ADC là góc ngoài tại D của tam giác AHD 

\(\Rightarrow\) góc ADC = góc AHD + góc HAD = 90 + góc HAD > 90 

\(\Rightarrow\) góc ADC là góc tù        

\(\Rightarrow\) AC > AD                                    (2)

Từ (1) và (2) \(\Rightarrow\) D nằm giữa C và H          (*)

Lại có H \(\in\) BC \(\Rightarrow\) H nằm giữa B và C     (**)

Từ (*) và (**) \(\Rightarrow\) H luôn nằm giữa B và D

8 tháng 4 2016

Bạn biết giải ý B ko giúp mk vs . mk cũng đang làm bài này đây

24 tháng 8 2017

a, Ta có: ^A + ^B + ^C = 180 ( tổng ba góc trong 1 tam giác)

mà theo gt ^A=90, ^C=30 => ^B = 60

Lại có tam giác ABD cân tại B ( BD=BA theo gt) và ^B = 60 ( theo trên)

=> tam giác ABD đều ( e tự giải thik)

vì tam giác ABD đều => ^BAD=60 => ^DAC=90-60=30

b, vì ^DAC = ^ DCA (=30)

=> tam giác DAC cân tại D(*)

=> AD=DC (1)

vì tam giác ADC cân tại D mà DE là cao ứn vs cạnh AC => DE đồng thời là đường trung tuyến ứng vs cạnh AC => AE = EC(2)

Xét tam giác ADE và tam giác CDE có:

AD=DC( theo 1)

AE=EC (theo 2)

DE chung

=> tam giác ADE= tam giác CDE (c.c.c)

c, vì tam giác ABD đều => AB=BD=AD=5cm

mà tam giác ADC cân tại D ( theo *)=> AD=DC=5cm

=> BC= BD + DC= 5+5=10cm

áp dụng định lí pytago vào tam giác ABC vuông tại A ta có:

BC2=AB2+AC2

=> AC2= BC2-AB2

hay AC2= 102-52=75

=> AC \(\sqrt{75}\)\(\approx\)8.66

d, TỰ LÀM

12 tháng 8 2018

ko co hinh a