Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ AG cắt BC tại P; kẻ AQ vuông góc với MN.
Áp dụng hệ thức lượng vào tam giác AMN ta có :
\(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{1}{AQ^2}\)
Lại có \(AQ\le AG\) ( vì AG là đường cao trong tam giác AQG )
Do đó \(\frac{1}{AM^2}+\frac{1}{AN^2}\ge\frac{1}{AG^2}\)
Vì G là trọng tâm của tam giác ABC nên
\(AG=\frac{2}{3}AP=\frac{2\cdot AP}{3}=\frac{2\cdot BP}{3}=\frac{BC}{3}\) ( đường trung tuyến ứng với cạnh huyền )
\(\Rightarrow\frac{1}{AM^2}+\frac{1}{AN^2}\ge\frac{1}{\left(\frac{BC}{3}\right)^2}=\frac{1}{\frac{BC^2}{9}}=\frac{9}{BC^2}\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow MN\perp AP\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha