K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2018

a, \(\Delta ABD=\Delta EBD\left(c.g.c\right)\left(1\right)\)

b, Từ \(\left(1\right)\Rightarrow\widehat{BAD}=\widehat{BED}\)( 2 góc tướng ứng ) hay \(\widehat{BAC}=\widehat{HED}\)

\(\Rightarrow\widehat{HED}=90^0\Rightarrow DE\perp BC\)

Mà \(AH\perp BC\left(gt\right)\Rightarrow DE//AH\Rightarrow ADEH\)là hình thang

cùng với \(\widehat{HED}=90^0\)nên ADEH là hình thang vuông.

c, Từ (1) \(\Rightarrow DA=DE\) 

Lại có \(BA=BE\left(gt\right)\Rightarrow BD\)là đường trung trực của đoạn thẳng AE

\(\Rightarrow BD\perp AE\)

\(AH\perp BE\left(gt\right)\), AH giao BD tại I

Do đó: I là trực tâm của \(\Delta ABE\Rightarrow EF\perp AB\)

Mặt khác, \(\Delta ABC\)vuông tại A (gt) nên \(AB\perp AC\)

Từ đó dẫn đến ACEF là hình thang vuông

Chúc bạn học tốt

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0

2:

Xét tứ giác AEDF có

góc AED=góc AFD=góc FAE=90 độ

AD là phân giác của góc FAE

=>AEDF là hình vuông

Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.a) CM: Tam giác ABE đồng dạng với tam giác ACF.b) CM: Tam giác AFE đồng dạng với tam giác ACB.c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng...
Đọc tiếp

Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.

a) CM: Tam giác ABE đồng dạng với tam giác ACF.

b) CM: Tam giác AFE đồng dạng với tam giác ACB.

c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.

Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng với H và C),từ M vẽ MN vuông góc với AC tại N.

a) CM:tam giác CMN đồng dạng với tam giác CAH và CA×CN=CH×CM

b) CM: tam giác ACM đồng dạng với tam giác HNC.

c) Trên tia đối của tia AC lấy điểm D sao cho AD《AC. Vẽ AE vuông góc với BD tại E. CM:góc BEH=góc BCN. Gọi K,F lần lượt là trung điểm BH và BD. I là giao điểm của EK và CF. CM: KC×IE=EF×IC.

1
27 tháng 5 2021

Bài 1: 

a) Xét tam giác ABE và tam giác ACF có:

Góc AEB=góc AFC(=90 độ)

Góc A chung

=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)

b)

Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)

=>\(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét tam giác AFE và tam giác ACB có:

Góc A chung(gt)

\(\frac{AB}{AC}=\frac{AE}{AF}\)

=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)

c)

H ở đou ra vại? :))

22 tháng 8 2021

BE vs CF cắt nhau ở h còn j bạn;-;

17 tháng 8 2019

Các bạn làm , vẽ hình rồi chụp nha cảm ơn ạ

a: Ta có: H và D đối xứng với nhau qua AB

nên AH=AD; BH=BD

=>ΔHAD cân tại A

=>AB là phân giác của góc HAD(1)

Ta có H và E đối xứngvới nhau qua AC

nên AH=AE; CH=CE

=>ΔAHE cân tại A

=>AC là phân giác của góc HAE(2)

Từ (1) và (2) suy ra góc DAE=2xgóc BAC=180 độ

=>D,A,E thẳng hàng

b: Xét ΔAHB và ΔADB có

AH=AD

BH=BD

AB chung

Do đó: ΔAHB=ΔADB

Suy ra: góc ADB=90 độ

=>BD vuông góc với DE(3)

Xét ΔAHC và ΔAEC có

AH=AE

HC=EC

AC chung

Do đó: ΔAHC=ΔAEC

Suy ra: góc AEC=90 độ

=>CE vuông góc với ED(4)

Từ (3) và (4) suy ra BDEC là hình thang vuông

c: ED=AE+AD
=AH+AH=2AH

d: Xét ΔDHE có 

HA là đường trung tuyến

HA=DE/2

Do đó: ΔDHE vuông tại H