\(\in\) MC(E
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2016

 kẽ tam giác abc vuông cân tại A, điểm B trái , C phải sau đó lấy E đâu cx được, mình làm là lấy E ở giữa M và C, ko lấy vào trung điểm, còn lại vẽ tiếp theo bài ok.

đầu tiên chứng minh ABH^=CAK^: 

+Có: AHB^=90 độ => HAB^+HBA^=90 độ

+Có:  BAC^=HBA^+HAB^=90 độ=> BAH^+KAC^=HBA^+HAB^=> HBA^=KAC^

 chứng minh tg AHB =tg CEA(ch-gnh):AHB^=CKA^=90 độ ; AB=CA(GT) ; HBA^=KAC^(CMT)

=>AH=CK ( giải thích)

tg KEA có : AKC^=90 độ=> KEC^+KCE^=90 độ 

tg EMA có: AME^=90 độ =>MAE^+MEA^=90 độ

MEA^= KEC^(đối đỉnh)

3 điều trên suy ra KCE^=EAM^

CMĐ tg AHM =CKM(cgc): AH=CK;HAM^=KCM^;AM=MC(trung tuyến tg vuông)

=>HM=KM và AMH^=CMK^ => AHM^+HMC^=HMC^+CMK^ => AMC^=HMK^=90 độ

có HM=KM => tg HMK cân tại M ;HMK^=90 độ => tg HMK vuông cân tại M

duyệt đi olm !

8 tháng 2 2016

giúp mik với, mik rất cần

a) Ta có ^ABH + ^BAH = 90° Măt khác ^CAH + ^BAH = 90° 
=> ^ABH = ^CAH 
Xét ▲ABH và ▲CAK có: 
^H = ^C (= 90°) 
AB = AC (T.g ABC vuông cân) 
^ABH = ^CAH (cmt) 
=> △ABH = △CAK (c.h-g.n) 
=> BH = AK 
b) Ta có BH//CK (Cùng ┴ AK) 
=>^HBM = ^MCK (SLT)(1) 
Mặt khác ^MAE + ^AEM = 90°(2) 
Và ^MCK + ^CEK = 90°(3) 
Nhưng ^AEM = ^CEK (đ đ)(4) 
Từ 2,3,4 => ^MAE = ^ECK (5) 
Từ 1,5 => ^HBM = ^MAE 
Ta lại có AM là trung tuyến của tam giác vuông ABC nên AM = BM =MC = 1/2 BC 
Xét ▲MBH và ▲MAK có: 
MB = AM (cmt); ^HBM = ^MAK(cmt); BH = AK (cma) 
=> △MBH = △MAK (c.g.c) 
c) Theo câu a, b ta có: AH = CK; MH = MK; AM = MC nên : ▲AMH = ▲ CMK (c.c.c) 
=> ^AMH = ^CMK; mà ^AMH + ^HMC = 90 độ 
=> ^CMK + ^HMC = 90° hay ^HMK = 90° 
Tam giác HMK có MK = MH và ^HMK = 90° nên vuông cân

1) Cho \(\Delta ABC\) vuông cân tai A . Điểm E nằm giữa A và C Kẻ tia Ex sao cho EB là tia phân giác của \(\widehat{AEx}\). Tia Ex cắt đường thẳng vuông góc với AC kẻ từ C tại K.a) Tính số đo \(\widehat{EBK}\)b) C/m EK < AB2) Cho \(\Delta ABC\) vuông cân tại A. M là trung điểm của BC, điểm E thuộc MC ( E\(\ne\)M, \(E\ne C\)). Vẽ BH vuông góc với AE tại H. CK vuông góc AE tại K.a) C/m \(\Delta MHK\) là tam giác vuông...
Đọc tiếp

1) Cho \(\Delta ABC\) vuông cân tai A . Điểm E nằm giữa A và C Kẻ tia Ex sao cho EB là tia phân giác của \(\widehat{AEx}\). Tia Ex cắt đường thẳng vuông góc với AC kẻ từ C tại K.

a) Tính số đo \(\widehat{EBK}\)

b) C/m EK < AB

2) Cho \(\Delta ABC\) vuông cân tại A. M là trung điểm của BC, điểm E thuộc MC ( E\(\ne\)M, \(E\ne C\)). Vẽ BH vuông góc với AE tại H. CK vuông góc AE tại K.

a) C/m \(\Delta MHK\) là tam giác vuông cân 

b) Giả sử \(\widehat{AHC}\) = 1350. C/m HA2=\(\frac{HB^2-HC^2}{2}\)

3) C/M: S= \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}< \frac{3}{4}\)

4)Cho \(\Delta ABC\) cân tại A. Điểm E nằm trên cạnh BC(E khác B, C), qua E vẽ đường thẳng vuông góc với AB tại D cắt đường thẳng vuông góc với AC tại C ở diểm M. K là trung điểm của BE trên tia Mk lấy điểm N sao cho K la trung điểm cuar MN.

C/m

a) \(\Delta MEC\) là tam giác cân 

b) MC = BN

c) Số đo \(\widehat{AKM}\) không đổi

5) Một xe ô tô khởi hành từ A dự định chạy với vận tốc 60km/h và sẽ đến B lúc 11h. Sau khi chạy được nửa quảng đường vì đường xấu nên ô tô giảm V còn 40km/h do đó đến 11h xe còn cách B 40km. Tính quãng đường AB và thời điểm ô tô xuất phát tại A.

0
7 tháng 1 2020

A B C D H A' x x/2

Kẻ đường cao AH ; Vì \(\Delta\)ABC cân 

=> H là trung điểm BC  

Xét \(\Delta\)ABC cân tại A có ^A = 120\(^o\)

=> ^ABH = ^ACH = 30\(^o\)

=> ^BAH = 60 \(^o\)

Lấy A' đối xứng với A qua H; BH vuông góc AA'; H là trung điểm AA'

=> \(\Delta\)ABA' cân tại B mà  ^BAA' = ^BAH = 60\(^o\)

=> \(\Delta\)ABA'  đều .

Đặt: AB = x => AA' = x => AH = x/2

+) \(\Delta\)ABH vuông tại H => BH\(^2\)= AB\(^2\)- AH\(^2\)\(x^2-\frac{x^2}{4}=\frac{3x^2}{4}\)

=> \(BH=\frac{\sqrt{3}x}{2}\)

=> \(BC=2BH=\sqrt{3}x=\sqrt{3}AB\)

( Như vậy chúng ta có nhận xét: Cho \(\Delta\)ABC cân tại A; ^A = 120\(^o\)=> \(BC=\sqrt{3}AB\))

=> \(AC=AB=\frac{BC}{\sqrt{3}}=\frac{6}{\sqrt{3}}\)

+) Xét \(\Delta\)ABD vuông tại A có: ^ABD = ^ABH  = 30 \(^o\)=> ^ADB = 60\(^o\)

=> ^ADC = 180\(^o\)- ^ADB = 180\(^o\)- 60 \(^o\)= 120\(^o\) 

Mà ^BAC = 120\(^o\); ^BAD = 90\(^o\)

=> ^DAC = 120\(^o\)- 90 \(^o\)= 30\(^o\)

+) Xét \(\Delta\)DAC có: ^DAC = 30\(^o\); ^ADC = 120\(^o\) => ^DCA = 30\(^o\)

=> \(\Delta\)DAC cân tại D và có: ^ADC = 120\(^o\). Theo nhận xét in đậm ở trên: \(AC=\sqrt{3}.DC\)

=> \(DC=\frac{AC}{\sqrt{3}}=\frac{\frac{6}{\sqrt{3}}}{\sqrt{3}}=\frac{6}{3}=2\)

=> \(BD=BC-DC=6-2=4cm\)

9 tháng 2 2017

Bấm vào đúng là đáp án sẽ hiện lên!!!!

Thử đi

19 tháng 3 2017

Điểm M ở đâu em :))))))))))

19 tháng 3 2017

Điểm M đâu bạn ????

19 tháng 5 2017

A B C D K E H

a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^o\) (kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^o\)(kề bù)

\(\widehat{ABC}=\widehat{ACB}\) (do \(\Delta ABC\) cân tại A)

Do đó: \(\widehat{ABD}=\widehat{ACE}\)

Xét hai tam giác ABD và ACE có:

\(\widehat{BAD}=\widehat{CAE}\) (gt)

AB = AC (do \(\Delta ABC\) cân tại A)

\(\widehat{ABD}=\widehat{ACE}\) (cmt)

Vậy: \(\Delta ABD=\Delta ACE\left(g-c-g\right)\)

Suy ra: BD = CE (hai cạnh tương ứng)

b) Xét hai tam giác BHD và CKE có:

BD = CE (cmt)

\(\widehat{ADB}=\widehat{AEC}\) (\(\Delta ABD=\Delta ACE\))

Vậy: \(\Delta BHD=\Delta CKE\left(ch-gn\right)\)

Suy ra: BH = CK (hai cạnh tương ứng).

23 tháng 6 2016

câu 1: ta có \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)                 (1)

ta lại có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+a}\)                                   (2)

từ 1 và 2: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)

đề bạn còn viết thiếu nx kìa