Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔABC nội tiếp
AB là đường kính
Do đó: ΔABC vuông tại C
Xét ΔACB vuông tại C có
\(\sin\widehat{CBA}=\dfrac{CA}{AB}=\dfrac{1}{2}\)
=>CA=R
hay \(CB=R\sqrt{3}\)
b: Xét ΔMAB vuông tại A có AC là đường cao
nên \(BC\cdot MC=AC^2\left(1\right)\)
Xét ΔACB vuông tại C có CH là đường cao
nên \(AH\cdot AB=AC^2\left(2\right)\)
Từ (1) và (2) suy ra \(MC\cdot BC=AH\cdot AB\)
Gọi AM cắt DE tại I
Theo tính chất hình chữ nhật ADHE : \(\widehat{E_1}=\widehat{HAC}=\widehat{MBA};\widehat{A_1}=\widehat{D_1}=\widehat{AHE}=\widehat{MCA}\)
\(\Rightarrow\widehat{A_1}=\widehat{ACM}\Rightarrow\Delta ACM\)cân tại M \(\Rightarrow MA=MC\)(*)
Do \(\Delta AID\)vuông tại I suy ra
\(\widehat{DAM}+\widehat{D_1}=90^0\Leftrightarrow\widehat{DAM}+\widehat{DAH}=90^0\left(1\right)\)
\(\widehat{ABM}+\widehat{DAH}=90^0\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{DAM}=\widehat{ABM}\)
\(\Rightarrow\Delta ABM\)cân tại M \(\Rightarrow MA=MB\)(**)
Từ (*);(**) suy ra MB=MC hay M là trung điểm BC . Do MF//AC suy ra
\(\widehat{MFC}=\widehat{ACF}\)
Mà
\(\widehat{ACF}=\widehat{MCF}\Rightarrow\widehat{MFC}=\widehat{MCF}\Rightarrow\Delta MFC\)cân tại M suy ra MC=MF
Mà MB=MC suy ra \(\Delta BFC\) có FM là trung tuyến \(FM=\frac{1}{2}BC\Rightarrow\) \(\Delta BFC\)vuông tại F hay \(BF\perp CF\left(đpcm\right)\)