Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do tam gaics ABC vuông tại A nên:
\(S_{ABC}=\dfrac{1}{2}AB.AC=96\left(cm^2\right)\)
Áp dụng định lí PTG: \(AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\)
Vậy \(S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot12\cdot16=96\left(cm^2\right)\)
\(S=\dfrac{12\cdot9}{2}=6\cdot9=54\left(cm^2\right)\)
a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng vơi ΔABC
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
BH=12^2/20=7,2cm
c: \(S_{ABC}=\dfrac{1}{2}\cdot12\cdot16=6\cdot16=96\left(cm^2\right)\)
a: BC=căn 12^2+16^2=20cm
Xét ΔABC có AD là phân giác
nên BD/DC=AB/AC=3/4
=>BD/3=DC/4=(BD+DC)/(3+4)=20/7
=>BD=60/7cm; DC=80/7cm
Xét ΔCAB có ED//AB
nên ED/AB=CD/CB=4/7
=>ED/12=4/7
=>ED=48/7cm
b: S ABC=1/2*12*16=96cm2
BD/BC=3/7
=>S ABD/S ABC=3/7
=>S ABD=288/7cm2
`Answer:`
Sửa đề câu a.: Tính tỉ số diện tích hai tam giác ABD và tam giác ACD nhé.
C D H A B
a. `\triangleABD` và `\triangleACD` có chung đường cao hạ từ `A`
\(\Rightarrow\frac{S_{ABD}}{S_{ACD}}=\frac{BD}{CD}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}\)
b. Áp dụng định lý Pytago: `AB^2+AC^2=BC^2<=>12^2+16^2=BC^2<=>BC^2=400<=>BC=20cm`
c. Ta có: `BC=BD+CD=20cm`
Mà `\frac{BD}{CD}=3/4=>\frac{BD}{3}=\frac{CD}{4}=\frac{BD+CD}{3+4}=\frac{20}{7}`\(\Rightarrow\hept{\begin{cases}BD=\frac{60}{7}cm\\CD=\frac{80}{7}cm\end{cases}}\)
d. \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.AH.BC\Rightarrow AH=\frac{12.16}{20}=9,6cm\)
1, a, Áp dụng định lý Pi-ta-go vào ΔΔ vuông ABCABC có:
AB2+AC2=BC2⇔BC=20AB2+AC2=BC2⇔BC=20 (cm)
Do AD là phần giác ˆAA^ theo tính chất đường phân giác ta có:
BDCD=ABAC=1216=34BDCD=ABAC=12/16=3/4
⇒BD/BD+CD=3/3+4⇒BD/BC=3/7⇒BD/BD+CD=3/3+4⇒BD/BC=3/7
⇒BD=3/7BC=60/7⇒BD=3/7BC=6/07
⇒DC=BC−BD=807⇒DC=BC−BD=807
b, AH là đường cao ΔΔ vuông ABC nên:
SΔABC=AH.BC/2=AB.AC2SΔABC=AH.BC2=AB.AC/2
⇒AH=AB.C/BC=48/5⇒AH=AB.C/BC=48/5 (cm)
Ta có:
BH2=AB2−AH2⇒BH=365BH2=AB2−AH2⇒BH=365 (cm)
⇒DH=BD=BH=4835⇒DH=BD=BH=4835 (cm)
AD2=DH2+AH2⇒AD=48√2/7AD2=DH2+AH2⇒AD=4827 (cm)
Bài 2, a,
Xét hai ΔABMΔABM và ΔACNΔACN có:
ˆAA^ chung
AB=ACAB=AC
ˆABM=ˆACNABM^=ACN^ (=12ˆB=12ˆC)(=12B^=12C^)
⇒ΔABM=ΔACN⇒ΔABM=ΔACN (g.c.g)
⇒AM=AN⇒AM=AN (hai cạnh tương ứng)
Ta có: AM=AN và AB=AC ⇒ANAB=AMAC⇒MN//BC⇒ANAB=AMAC⇒MN//BC (Ta-lét đảo)
b, Do BM là phân giác ˆBB^ theo tính chất đường phân giác ta có:
AM/MC=AB/BC=5/6AM/MC=AB/BC=5/6
⇒AM/AM+MC=5/5+6⇒AM/AC=5/11⇒AM/AM+MC=55+6⇒AM/AC=511
⇒AM=5/11AC=25/11⇒AM=5/11AC=25/11 (cm)
⇒MC=AC−AM=30/11⇒MC=AC−AM=30/11 (cm)
MN//BC⇒MN/BC=AM/AC=5/11MN//BC⇒MNBC=AMAC=5/11
⇒MN=5/11BC=3011⇒MN=51/1BC=30/11 (cm).