\(\left|\overrightarrow{BC}\right|\overrigh...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 11 2018

Theo tính chất trọng tâm tam giác ta luôn có:

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\Rightarrow\overrightarrow{GA}=-\overrightarrow{GB}-\overrightarrow{GC}\)

Thế vào đẳng thức giả thiết ta được:

\(BC.\left(-\overrightarrow{GB}-\overrightarrow{GC}\right)+AC.\overrightarrow{GB}+AB.\overrightarrow{GC}=\overrightarrow{0}\)

\(\Rightarrow\left(AC-BC\right)\overrightarrow{GB}=\left(BC-AB\right)\overrightarrow{GC}\) (1)

\(\overrightarrow{GB};\overrightarrow{GC}\) không phải 2 vecto cùng phương

\(\Rightarrow\left(1\right)\) xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}AC-BC=0\\BC-AB=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AC=BC\\AB=BC\end{matrix}\right.\)

\(\Rightarrow AB=AC=BC\) \(\Rightarrow\Delta ABC\) là tam giác đều

AH
Akai Haruma
Giáo viên
19 tháng 10 2019

Đề thiếu. Bạn xem lại đề.

15 tháng 5 2017

Ta đã biết nếu G' là trọng tâm tam giác ABC thì:
\(\overrightarrow{G'A}+\overrightarrow{G'B}+\overrightarrow{G'C}=\overrightarrow{0}\).
Gỉa sử có điểm G thỏa mãn: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\).
Ta sẽ chứng minh \(G\equiv G'\).
Thật vậy:
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{GG'}+\overrightarrow{G'A}+\overrightarrow{G'B}+\overrightarrow{G'C}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{GG'}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GG'}=\overrightarrow{0}\).
Vậy \(G\equiv G'\).

12 tháng 5 2017

Dựng hình hình hành CADB.
A B C D
Theo quy tắc hình bình hành: \(\overrightarrow{CA}+\overrightarrow{CB}=\overrightarrow{CD}\).
Vì vậy \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\left|\overrightarrow{CD}\right|=CD\);
Mặt khác \(\left|\overrightarrow{CA}-\overrightarrow{CB}\right|=\left|\overrightarrow{CA}+\overrightarrow{BC}\right|=\left|\overrightarrow{BA}\right|=BA\).
Suy ra: \(CD=AB\).
Hình bình hành CADB có hai đường chéo bằng nhau (\(CD=AB\) )nên hình bình hành CADB là hình chữ nhật.

NV
7 tháng 2 2020

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\Rightarrow\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)^2=0\)

\(\Rightarrow-2\left(\overrightarrow{GA}.\overrightarrow{GB}+\overrightarrow{GB}.\overrightarrow{GC}+\overrightarrow{GC}.\overrightarrow{GA}\right)=GA^2+GB^2+GC^2\)

\(\Rightarrow\overrightarrow{GA}.\overrightarrow{GB}+\overrightarrow{GB}.\overrightarrow{GC}+\overrightarrow{GC}.\overrightarrow{GA}=-\frac{1}{2}\left(\frac{2}{3}m_a^2+\frac{2}{3}m_b^2+\frac{2}{3}m_c^2\right)\)

\(=-\frac{1}{6}\left(AB^2+BC^2+CA^2\right)\)

Hình như đề bài sai dấu?

Bài 3: 

Tham khảo:

image

NV
3 tháng 12 2021

\(T=\overrightarrow{GA}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)+\overrightarrow{GB}.\overrightarrow{CA}+\overrightarrow{GC}.\overrightarrow{AB}\)

\(=\overrightarrow{AB}\left(\overrightarrow{GC}-\overrightarrow{GA}\right)+\overrightarrow{AC}\left(\overrightarrow{GA}-\overrightarrow{GB}\right)\)

\(=\overrightarrow{AB}\left(\overrightarrow{GC}+\overrightarrow{AG}\right)+\overrightarrow{AC}\left(\overrightarrow{GA}+\overrightarrow{BG}\right)\)

\(=\overrightarrow{AB}.\overrightarrow{AC}+\overrightarrow{AC}.\overrightarrow{BA}\)

\(=0\)

25 tháng 10 2020

Kẻ trung tuyến AM, BN

a, \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\left|2\overrightarrow{AM}\right|=2AM\)

\(=2\sqrt{AB^2-\frac{1}{4}BC^2}=2\sqrt{a^2-\frac{1}{4}a^2}=\sqrt{3}.a\)

b, \(\left|\overrightarrow{AB}+\overrightarrow{CB}\right|=\left|-2\overrightarrow{AN}\right|=2AN=\sqrt{3}.a\)

c, \(\left|\overrightarrow{GB}+\overrightarrow{GC}\right|=\left|2\overrightarrow{GM}\right|=\left|\frac{2}{3}\overrightarrow{AM}\right|=\frac{2}{3}AM=\frac{2}{3}.\frac{\sqrt{3}}{2}a=\frac{\sqrt{3}}{3}a\)

d, \(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{CB}\right|=CB=a\)