K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VB
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
PN
0
9 tháng 10 2016
Chọn tam giác BMC làm trung gian. Ta có : Mà Do đó : Tương tự ta chứng minh được Suy ra BN = BC ⇒ = 2 3 SBMN 2 3 SBMC BM = AB ⇒ = 1 3 SBMC 1 3 SABC SBMN = . = 2 3 1 3 SABC 2 9 SABC SBMN = SPNC = SAMP = 2 9 SABC SMNP = SABC − 3SBMN = SABC − 3. = 2 9 SABC 1 3 SAB
k không tui bắng hết
9 tháng 7 2017
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
Ta có : \(2MN+2NP+2MP=116\Rightarrow2\left(MN+NP+MP\right)=116\)
\(\Rightarrow MN+NP+MP=116\div2=58\)
Vì tam giác \(ABC=\)tam giác \(MNP\)nên ta có :
\(AB=MN\) \(BC=NP\) và \(AC=MP\)từ đó ta suy ra
\(AB+BC+AC=58\). Vì \(AB;BC;AC\)lần lượt tỉ lệ thuận với 2 ; 3 ; 4
\(\Rightarrow\frac{AB}{2}=\frac{BC}{3}=\frac{AC}{4}\). Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{AB}{2}=\frac{BC}{3}=\frac{AC}{4}=\frac{AB+BC+AC}{2+3+4}=\frac{58}{9}\)
\(\Rightarrow\hept{\begin{cases}\frac{AB}{2}=\frac{58}{9}\Leftrightarrow AB=\frac{116}{9}\\\frac{BC}{3}=\frac{58}{9}\Leftrightarrow BC=\frac{58}{3}\\\frac{AC}{4}=\frac{58}{9}\Leftrightarrow AC=\frac{232}{9}=NP\end{cases}}\) Vậy ta đã tìm được số đo của AB ; AC và NP