K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2019

A B C D E F O I H M K G P Q J L T

a) Gọi EF cắt AO tại T. Ta thấy AE,AF là các tiếp tuyến từ A tới (O) => OA là trung trực của EF

=> OA vuông góc EF tại T. Áp dụng hệ thức lượng trong tam giác vuông (\(\Delta\)AEO) có OE2 = OT.OA

=> OD2 = OT.OA. Từ đó \(\Delta\)DOT ~ \(\Delta\)AOD (c.g.c) => ^ODT = ^OAD

Cũng từ OA vuông góc EF tại T => ^OTI = 900 = ^ODI => Tứ giác DOTI nội tiếp (OI)

=> ^ODT = ^OIT. Mà ^ODT = ^OAD (cmt) nên ^OAD = ^OIT. Do ^OIT + ^IOT = 900 nên ^OAD + ^IOT = 900

Nếu gọi AD giao OI tại L thì ta có \(\Delta\)AOL vuông tại L hay DG vuông góc OI

Mà DG là một dây của (O) nên OI là trung trực của DG. Theo đó ^IGO = ^IDO = 900

Vậy thì IG tiếp xúc với (O) tại G (đpcm).

b) Gọi DJ là đường kính của (O). Từ B và C lần lượt hạ BP và CQ vuông góc với KJ (P,Q thuộc KJ)

Khi đó ta có ^DGJ = ^DKJ = 900 và BP // DK // CQ (Cùng vuông góc KJ)

Xét \(\Delta\)DGJ và \(\Delta\)AHD: ^DGJ = ^AHD = 900, ^GDJ = ^HAD (AH // DJ) => \(\Delta\)DGJ ~ \(\Delta\)AHD (g.g)

Chú ý M là trung điểm AH, L là trung điểm GD nên dễ có \(\Delta\)JGL ~ \(\Delta\)DHM (c.g.c)

=> ^GJL = ^HDM => ^OLJ = ^BDK (Do OL // GJ) = ^DJK (Vì BC tiếp xúc (O))

Theo câu a: DL vuông góc OI tại L, áp dụng hệ thức lượng trong tam giác vuông (\(\Delta\)ODI) có:

OD2 = OL.OI => OJ2 = OL.OI. Từ đây \(\Delta\)OLJ ~ \(\Delta\)OJI (c.g.c) => ^OLJ = ^OJI hay ^OLJ = ^DJI

Két hợp với ^OLJ = ^DJK (cmt) suy ra ^DJK = ^DJI. Mà K,I cùng phía so với DJ nên JK trùng JI

Hay K,I,J thẳng hàng. Kéo theo I,P,K,Q cũng thẳng hàng. Áp dụng hệ quả ĐL Thales có:

\(\frac{CQ}{BP}=\frac{IC}{IB}\). Lại có \(\frac{EA}{EC}.\frac{FB}{FA}.\frac{IC}{IB}=1\)(ĐL Melelaus) => \(\frac{IC}{IB}=\frac{EC}{FB}\)(Vì EA=FA)

Do đó \(\frac{CQ}{BP}=\frac{EC}{FB}=\frac{CD}{BD}=\frac{QK}{PK}\)(Theo tính chất 2 tiếp tuyến cắt nhau và ĐL Thales)

Kết hợp với ^BPK = ^CQK = 900  suy ra \(\Delta\)BPK ~ \(\Delta\)CQK (c.g.c) => ^BKP = ^CKQ

=> 900 - ^BKP = 900 - ^CKQ => ^BKD = ^CKD => KD là phân giác ^BKC (đpcm).

14 tháng 6 2019

Tứ giác nội tiếp

a) Đường tròn (O)(O) tiếp xúc với AB.BC,CAAB.BC,CA tại D,E,FD,E,F, tức là OO là giao của ba đường phân giác tam giác ABCABC và OD⊥AB,OF⊥AC,OE⊥BCOD⊥AB,OF⊥AC,OE⊥BC

Do đó: ODAˆ+OFAˆ=900+900=1800ODA^+OFA^=900+900=1800

⇒ODAF⇒ODAF là tứ giác nội tiếp.

Hoàn toàn tương tự: ODBE,OECFODBE,OECF nội tiếp.

Từ các tứ giác nội tiếp suy ra:

⎧⎩⎨ODFˆ=OAFˆ=Aˆ2ODEˆ=OBEˆ=Bˆ2{ODF^=OAF^=A^2ODE^=OBE^=B^2 ⇒ODFˆ+ODEˆ=Aˆ2+Bˆ2⇒ODF^+ODE^=A^2+B^2

hay EDFˆ=Aˆ+Bˆ2EDF^=A^+B^2

Tương tự: DEFˆ=Bˆ+Cˆ2DEF^=B^+C^2 và EFDˆ=Aˆ+Cˆ2EFD^=A^+C^2

Vì ABCABC là tam giác nhọn nên các góc đều nhỏ hơn 900900

⇒EDFˆ,DEFˆ,EFDˆ<900⇒EDF^,DEF^,EFD^<900

⇒△DEF⇒△DEF có 3 góc nhọn.

b)

Vì tam giác ABCABC cân tại AA nên ABCˆ=ACBˆABC^=ACB^

⇒ABCˆ=180−BACˆ2=900−Aˆ2⇒ABC^=180−BAC^2=900−A^2

Tứ giác ODAFODAF nội tiếp ⇒ADFˆ=AOFˆ=900−OAFˆ=900−Aˆ2⇒ADF^=AOF^=900−OAF^=900−A^2

Do đó: ABCˆ=ADFˆABC^=ADF^, hai góc này ở vị trí đồng vị nên DF∥BCDF∥BC

c)

{ABCˆ=ACBˆABCˆ=ADFˆ(theo phần b){ABC^=ACB^ABC^=ADF^(theo phần b) ⇒ADFˆ=ACBˆ=FCBˆ⇒ADF^=ACB^=FCB^

⇒BDFC⇒BDFC nội tiếp.

d)

BDBD là tiếp tuyến của (O)(O) nên BDMˆ=DFIˆ=DFBˆBDM^=DFI^=DFB^ (cùng chắn cung DI)

Mà do BDFCBDFC nội tiếp nên DFBˆ=DCBˆDFB^=DCB^

Từ đây suy ra BDMˆ=DCBˆBDM^=DCB^

Xét tam giác BDMBDM và BCDBCD có:

{∠B ChungBDMˆ=BCDˆ(cmt)⇒△BDM∼△BCD(g.g){∠B ChungBDM^=BCD^(cmt)⇒△BDM∼△BCD(g.g)

⇒BDBC=BMBD(1)⇒BDBC=BMBD(1)

Do DF∥BC⇒BDAB=CFACDF∥BC⇒BDAB=CFAC (theo định lý Ta -let) mà AB=AC⇒BD=CF(2)AB=AC⇒BD=CF(2)

Từ (1);(2)⇒BDBC=BMCF(1);(2)⇒BDBC=BMCF (đpcm

~Mik ko chắc~

23 tháng 1 2020

1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)

 ~~~~~~~~~ Bài làm ~~~~~~~~~

A B C O I K H Q D

Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))

\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))

\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)

Ta lại có: \(BD\perp HK\)

\(\Rightarrow BD\) là đường trung trực của \(HK\)

\(\Rightarrow\Delta IHK\) cân tại \(I\)

\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)

Lại có:\(\widehat{DKO}=\widehat{HAO}\)\(\Delta OKA\) cân tại \(O\))

Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)

\(\Rightarrow\widehat{KIO}=90^0\)

\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)

(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )

24 tháng 1 2020

Ủa bạn ơi sao phụ nhau? Dòng đầu ấy

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.a) Chứng minh tứ giác AEHF là hình chữ nhậtb) Chứng minh tứ giác BEFC nội tiếpc) Gọi I là trung điểm của BC.Chứng minh AI vuông góc với EFd) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEFC.Tính diện tích hình tròn tâm K.B2: Cho ABC nhọn, đường tròn (O)...
Đọc tiếp

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.

a) Chứng minh tứ giác AEHF là hình chữ nhật

b) Chứng minh tứ giác BEFC nội tiếp

c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF

d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.

B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H

a) Chứng minh tứ giác ADHE nội tiếp

b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE

c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF

d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC

B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )

a) Chứng minh tứ giác OBAC nội tiếp

b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD

c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA

d) Tính diện tích tam giác BDC theo R

B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H

a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó

b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC

c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF

d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R

B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.

a) Chứng minh tứ giác AKHF nội tiếp đường tròn.

b) Chứng minh hai cung CI và CJ bằng nhau.

c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau

B6: Cho tam giác ABC nhọn nội tiếp đường tròn  ( O; R ),các đường cao BE, CF  .

a)Chứng minh tứ giác BFEC nội tiếp.

b)Chứng minh OA  vuông góc với EF.

3
27 tháng 5 2018

B1, a, Xét tứ giác AEHF có: góc AFH = 90o  ( góc nội tiếp chắn nửa đường tròn)

                                             góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )

                                             Góc CAB = 90o ( tam giác ABC vuông tại A)

=> tứ giác AEHF là hcn(đpcm)

b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF  = góc AHF ( hia góc nội tiếp cùng chắn cung AF)

mà góc AHF = góc ACB ( cùng phụ với góc FHC)

=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)

c,gọi M là giao điểm của AI và EF

ta có:góc AEF = góc ACB (c.m.t) (1)

do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA

hay tam giác IAB cân tại I => góc MAE = góc ABC (2)

mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong  một tam giác)

=>  ACB + góc ABC = 90o (3)

từ (1) (2) và (3) => góc AEF + góc MAE = 90o

=> góc AME = 90o (theo tổng 3 góc trong một tam giác)

hay AI uông góc với EF (đpcm)

1 tháng 4 2019

em moi lop 6 huhuhuhuhuhu

17 tháng 6 2017

a, áp dụng t/c 2 tiếp tuyến cắt nhau suy ra góc bom =moa

xét tam giác cân OBAcó  bom =moa suy ra oh vg ab

tứ giác đó nt do tổng 2 góc đối 

b,cách mk là cm tam giác MEA đồng dạng vs MAF gg

17 tháng 6 2017

đầu tiên bn nối I vs H Ta có IH là đg trung bình trong tam giác kab

                                    =>IH// KB ,HAY GÓC IHA =CBA MÀ CBA =CEA =1/2 AC 

                                                          =>TỨ GIÁC IHAE nt suy ra góc HEA CỘNG GÓC HIA =180 ĐỘ

                                           GÓC HIA =BKA =90 ĐỘ 

                                   TỪ ĐÓ SUY RA GÓC HEA =90 ĐỘ  HAY GÓC HEA LÀ GÓC VUÔNG

Một số bài toán hay về tâm nội tiếp:Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các...
Đọc tiếp

Một số bài toán hay về tâm nội tiếp:

Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.

Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.

Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.

Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.

1
14 tháng 3 2020

chị gisp em bài này

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0
1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:a) AP là phân giác của góc BAQb) CP và BR song song với nhau2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax...
Đọc tiếp

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau

2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA

3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.

4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!

0