Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)
b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có
\(\widehat{EBF}=\widehat{EDC}\)
Do đó: ΔEBF\(\sim\)ΔEDC
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DO đó: ΔADF=ΔEDC
Suy ra: AF=EC
=>BF=BC
=>ΔBFC cân tại B
mà BD là đường phân giác
nên BD la đường cao
\(DM\)\(\perp\)\(AC\)
\(BE\)\(\perp\)\(AC\)
suy ra: \(DM//BE\)
\(\Delta CBE\)có \(DM//BE\) áp dụng định lý Ta-lét ta có:
\(\frac{CD}{BD}=\frac{CM}{EM}\)
\(\Delta CBH\) có \(DK//BH\)theo hệ quả định lý Ta-lét ta có:
\(\frac{DK}{BH}=\frac{CK}{CH}\) (1)
\(\Delta CEH\) có \(KM//EH\) theo hệ quả định lý Ta-lét ta có:
\(\frac{KM}{EH}=\frac{CK}{CH}\) (2)
Từ (1) và (2) suy ra: \(\frac{DK}{BH}=\frac{KM}{EH}\)
HAY \(\frac{BH}{EH}=\frac{DK}{KM}\)
Ai gỡ rối hộ mình bài này đi ạ, vì nó mà mình mất ăn mất ngủ mấy ngày nay TT^TT