\(\Delta\)AEB...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB\cdot AF=AC\cdot AE\)(đpcm)

b)Sửa đề: \(\widehat{BAD}=\widehat{BED}\)

Xét tứ giác BDEA có 

\(\widehat{BEA}=\widehat{BDA}\left(=90^0\right)\)

\(\widehat{BEA}\) và \(\widehat{BDA}\) là hai góc cùng nhìn cạnh BA

Do đó: BDEA là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

hay \(\widehat{BAD}=\widehat{BED}\)(hai góc cùng nhìn cạnh BD)

a: Xét ΔAEB vuông tại E và ΔAFC vuôg tại F có

góc BAE chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF

b: Xét tứ giác AFHE có

góc AFH+góc AEH=180 độ

=>AFHE nội tiếp

=>góc FAH=góc FEH

=>goc BAD=góc BEF

3 tháng 3 2018

kết bạn mình nghe

  
  
  

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

hay \(AE\cdot AC=AB\cdot AF\)

Ta có: \(AE\cdot AC=AB\cdot AF\)(cmt)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

29 tháng 3 2018

a)   Xét   \(\Delta BDA\)và    \(\Delta BFC\) có:

\(\widehat{BDA}=\widehat{BFC}=90^0\)

\(\widehat{ABC}\) chung

suy ra:   \(\Delta BDA~\Delta BFC\)

\(\Rightarrow\)\(\frac{BD}{BF}=\frac{BA}{BC}\)

\(\Rightarrow\)\(BD.BC=BA.BF\)