Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C I N M K D E
Có AD // NK, đường tròn (MNK) tiếp xúc với AC tại K, suy ra ^ADM = ^MNK = ^AKM
Suy ra 4 điểm A,M,K,D cùng thuộc một đường tròn. Tương tự với 4 điểm A,M,K,E
Từ đó 5 điểm A,K,M,D,E cùng thuộc một đường tròn
Do vậy ^NDE = ^NKM = ^BNM. Vì 2 góc ^NDE, ^BNM so le trong nên DE // BC hay PQ // BC (đpcm).
A B C I M N D K a , Tứ giác ANMI có : góc MAN = góc ANI = góc AMI = 90o nên là hình chữ nhật .
→ AI = MN
b, ΔABC vuông tại A có đường trung tuyến AI ứng với cạnh huyền nên :
AI = IC
→ ΔAIC cân tại I
→ Góc IAN = góc ICN
Xét ΔAIN và ΔCIN có :
Góc INA = Góc INC = 90o
AI = IC
Góc IAN = góc ICN
→ Δ AIN = Δ CIN ( cạnh huyền - góc nhọn )
→ AN = NC
Ta có : IN = ND
AN = NC
→ Tứ giác AICD là hình bình hành mà có hai đường chéo ID và AC vuông góc với nhau nên là hinhg thoi .
a: Xét ΔCMI vuông tại M và ΔCAB vuông tại A có
góc C chung
=>ΔCMI đồng dạng với ΔCAB
b: BC=căn 5^2+12^2=13cm
CM=13/2=6,5cm
ΔCMI đồng dạng với ΔCAB
=>MI/AB=CM/CA
=>MI/5=6,5/12=13/24
=>MI=65/24(cm)