K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: H và K đối xứng nhau qua BC

nên BC là đường trung trực của HK

Suy ra: BH=BK và CH=CK

Xét ΔBHC và ΔBKC có 

BH=BK

BC chung

HC=KC

Do đó: ΔBHC=ΔBKC

10 tháng 7 2017

Hướng dẫn nha!(đang ngại làm)

Dùng tính chất tổng các góc trong tứ giác tính được góc EHD.

góc EHD=góc BHC(đối đỉnh)

Chứng minh được tam giác BHC=tam giác BKC(c.c.c)

=> góc BHC=góc BKC

=> góc BHC=góc BKC=góc EHD

Vậy............

Chúc bạn học tốt!!!

10 tháng 7 2017

@Hoang Hung Quan anh cứ làm đi em vẽ hình cho :)

28 tháng 11 2021

 

a) Ta có:

 

K đối xứng với H qua BC

⇒ BC là trung trực của HK

⇒ BH=BK; CH=CK

Xét ΔBHC và ΔBKC có:

BH=BK (cmt)

CH=CK (cmt)

BC: cạnh chung

Do đó ΔBHC = ΔBKC(c.c.c)

b) Ta có:

ˆBHK = ˆBAH + ˆABH (góc ngoài của ΔABH)

ˆCHK = ˆCAH+ ˆACH (góc ngoài của ΔACH)

⇒ ˆBHC = ˆBHK + ˆCHK

= ˆBAH + ˆABH + ˆCAH + ˆACH

= ˆBAC + ˆABH + ˆACH

Ta lại có:

ˆBAC+ˆABH = 90o (BH⊥AC)

ˆBAC+ˆACH = 90o (CH⊥AB)

⇒2ˆBAC+ˆABH+ˆACH=180o

⇒ˆABH+ ˆACH = 180o− 2ˆBAC

Do đó:

ˆBHC =ˆBAC+ 180o− 2ˆBAC= 180o− ˆBAC= 180o−70o = 110o

Mặt khác:

ˆBHC = ˆBKC (ΔBHC = ΔBKC)

⇒ˆBKC=110

a: Ta có: K đối xứng với H qua BC

nên BC là đường trung trực của HK

=>BH=BK và CH=CK

Xét ΔBHC và ΔBKC có

BH=BK

HC=KC

BC chung

Do đó;ΔBHC=ΔBKC

b: \(\widehat{BAC}=70^0\)

nên \(\widehat{ABC}+\widehat{ACB}=110^0\)

\(\widehat{HBC}+\widehat{HCB}=90^0-\widehat{ABC}+90^0-\widehat{ACB}\)

\(=180^0-110^0=70^0\)

=>\(\widehat{BHC}=\widehat{BKC}=110^0\)

Hiểu rõ về BTS chỉ có thể là Army phải không chị Bangtan?Chỉ cần nhìn avatar đoán ra chủ nick là con gái vì số fan girl nhiều hơn fan boy.