Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta đx biết nếu G là trọng tâm của ABC thì
GA+GB+GC=0
AA' =AG+GG'+G'A'
BB'=BG+GG'+G'B'
CC'=CG+GG'+G'C"
==> AA'+BB'+CC'=(AG+BG+CG)+3GG'+(G'A'+G'B'+G...
ĐPCM
dk cần và đủ để 2 tam giác có cùng trọng tâm là
AA'+BB'+CC' =0
c/m:
dk cần:AA'+BB'+CC'=0 thì ABC và A'B'C' cùng trọng tâm
vì AA'+BB'+CC'=3GG'
==> GG'=0 ==> G trùng G'
dk đủ: G trùng G' thì AA'+BB'+CC'=0
AA'+BB'+CC'=3GG'
mà GG' =0 ==> AA'+BB'+CC'=0 ĐPCM
A B C C, G M B, C, H D
TA CÓ
\(\frac{MC,}{GC,}=\frac{S\Delta AMB}{S\Delta AGB}\left(1\right)\)
\(\frac{MB,}{GB,}=\frac{S\Delta AMC}{S\Delta AGC}\left(2\right)\)
DỰNG GH VÀ MD VUÔNG GÓC VỚI BC
AD ĐỊNH LÍ TA LÉT
=>\(\frac{MD}{GH}=\frac{MA,}{GA,}\)
MẶT KHÁC \(\frac{MD}{GH}=\frac{S\Delta BMC}{S\Delta BGC}\)
=> \(\frac{MA,}{GA,}=\frac{S\Delta BMC}{S\Delta BGC}\left(3\right)\)
TỪ 1 ,2,3
=> \(\frac{MA,}{GA,}+\frac{MB,}{GB,}+\frac{MC,}{GC,}=\frac{S\Delta AMB+S\Delta BMC+S\Delta AMC}{\frac{1}{3}S\Delta ABC}=\frac{3SABC}{SABC}=3\)
Ta sẽ chứng minh bằng quy nạp : Giả sử đẳng thức đúng với đa giác (n-1) cạnh.
Gọi \(\overrightarrow{e}\) là vecto đơn vị vuông góc với \(A_1A_{n-1}\) và hướng ngoài tam giác \(A_1A_{n-1}A_n\)
Ta dễ dàng chứng minh được \(A_nA_1.\overrightarrow{e_n}+A_1A_{n-1}.\overrightarrow{e}+A_{n-1}.A_n.\overrightarrow{e_{n-1}}=\overrightarrow{0}\Leftrightarrow A_nA_1\overrightarrow{e_n}+A_{n-1}A_n\overrightarrow{e_{n-1}}=-\overrightarrow{e}A_1A_{n-1}\)Giả sử đẳng thức đúng với n-1 , tức \(A_1A_2.\overrightarrow{e_1}+A_2A_3\overrightarrow{e_2}+...+A_{n-1}A_n\overrightarrow{e_{n-1}}=\overrightarrow{0}\)
Từ giả thiết quy nạp ta có
\(A_1A_2.\overrightarrow{e_1}+A_2A_3\overrightarrow{e_2}+...+A_{n-1}A_n\overrightarrow{e_{n-1}}-A_1A_{n-1}\overrightarrow{e}=\overrightarrow{0}\)
\(A_1A_2.\overrightarrow{e_1}+A_2A_3\overrightarrow{e_2}+...+A_{n-1}A_n\overrightarrow{e_{n-1}}+A_nA_1\overrightarrow{e_n}+A_{n-1}A_n\overrightarrow{e_{n-1}}=\overrightarrow{0}\)(đpcm)
A B C G M C'
Kéo dài đoạn BM , lấy thuộc BM sao cho MC' = MG
=> ADCG là hình bình hành
=> GB = 2GM = GC'
Ta có : \(\overrightarrow{GA}+\overrightarrow{GB}=\overrightarrow{GC'}=\overrightarrow{CG}\) (quy tắc hình bình hành)
\(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{CG}+\overrightarrow{GC}=\overrightarrow{CC}=\overrightarrow{0}\)
A C D B G E Gọi G \(\in\) trung tuyến AE, D đối xứng với E qua G
=> BGCD là hình bình hành
=> \(\overrightarrow{GB}\) + \(\overrightarrow{GC}\) = \(\overrightarrow{GD}\) ( quy tắc HBH) và \(\overrightarrow{GA}\) +\(\overrightarrow{GD}\) = 0
Ta có:
\(\overrightarrow{GA}\) + \(\overrightarrow{GB}\) + \(\overrightarrow{GC}\) = \(\overrightarrow{GA}\) +\(\overrightarrow{GD}\) = \(\overrightarrow{0}\) (đpcm)