Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H M F E I K
, M là trung điểm của BC ⇒ MB = MC
Xét ΔMBA và ΔMCE có:
MB = MC
\(\widehat{AMB}=\widehat{EMC}\)(đối đỉnh)
MA = ME
=> ΔMBA = ΔMCE (c.g.c) (đpcm)
b, Xét 2 tam giác vuông ΔBHA và ΔBHF có:
BH chung; \(\widehat{ABH}=\widehat{FBH}\) (do góc ABx nhận BC là tia phân giác)
=> ΔBHA = ΔBHF (cạnh góc vuông - góc nhọn)
=> AB = BF mà AB = CE (do ΔMBA = ΔMCE)
=> CE = BF (đpcm)
c, Ta thấy: \(\widehat{FBC}=\widehat{ABC}=\widehat{ECB}\)
=> ΔKBC cân tại K mà KM là trung tuyến
=> KM là phân giác của \(\widehat{BKC}\) (1)
ΔKBC cân tại K ⇒ KB = KC mà BF = CE
⇒ KB - BF = KC - CE ⇒ KF = KE
Ta chứng minh được ΔBEK = ΔCFK (c.g.c)
=> \(\widehat{EBK}=\widehat{FCK}\)
=.> ΔBIF = ΔCIE (g.c.g)
=> IF = IE ⇒ ΔIFK = ΔIEK (c.c.c)
\(\Rightarrow\widehat{IKF}=\widehat{IKF}\)
⇒ KI là phân giác của ^BKC (2)
Từ (1) và (2) suy ra M, I, K thẳng hàng (đpcm)
a, Xét tg BAE và tg BDE ( \(\widehat{BAE}=\widehat{BDE}=90^0\))
BA=BD (gt)
BE chung
=> tg BAE = tg BDE ( ch-cgv)
=> AE=ED
Ta có \(\hept{\begin{cases}BA=BD\left(gt\right)\\AE=ED\left(cmt\right)\end{cases}}< =>\)BE trung trực AD (đpcm)
b, +ED vuông BC
+ AH vuông BC
=> AH//DE
=> \(\widehat{HAD}=\widehat{ADE}\)( So le trong) (2)
Lại có gọi m là giao 2 đường thẳng BE và AD
vì BE trung trực AD =>+ \(\widehat{AME}=\widehat{EMD}=90^{0^{ }}\)
Xét tg AEM và tg DEM có \(\left(\widehat{AME}=\widehat{EMD}=90^0\left(cmt\right)\right)\)
+ AD = ED (cma)
+ EM chung
=> tg AEM = tg DEM ( ch-cgv)
=> \(\widehat{DAE}=\widehat{ADE}\)(2)
tỪ (1) VÀ (2) => \(\widehat{HAD}=\widehat{DAE}\)=> AD phân giác góc AHC
Bài 1:
a: Ta có: ΔABC đều
mà BD,CE là các đường phân giác
nên BD,CE là các đường cao
b: Ta có: ΔABC đều
mà BD,CE là các đường cao
và BD cắt CE tại O
nên O là tâm đường tròn ngoại tiếp của ΔABC
Suy ra: OA=OB=OC