Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì D,E là trung điểm của 2 cạnh AB,AC =>BE và CD là 2 đường trung tuyến tam giác ABC.
Mà BE và CD cắt nhau tại M =>M là trọng tâm tam giác ABC
=> AN là trung tuyến tam giác ABC
Hay N là trung điểm của BC.
Bạn tự vẽ hình. Nối G với C ta có: S(BAE) = S(BEC) = 1/2 S(ABC)(1) (vì có AE= EC = 1/2 AC và cung chiều cao hạ từ B xuống AC) Tương tự ta có: S(GAE)= S(GEC)(2) Cũng chứng minh tương tự ta có: S(ADB)= S(ADC)=1/2S(ABC) (3) S(GDB)= S(GCD) (4) Từ (1) (20 suy ra: S(BCE)= S(ADC)= 1/2 S(ABC) => S(BDG)= S(AGE) (cùng bớt SGECD) Từ đó suy ra tiếp S(BDG)= S(AGE) = S(GEC)=S(ADC) Suy ra S(GDC) = 1/2 (S(GCE) +S(GAE))= 1/2 S(GCA) Mặt khác hai tam giác này chung chiều cao hạ từ C xuống AD nên Đáy GD= 1/2 GA( chứng minh đã xong)
Bạn tự vẽ hình. Nối G với C ta có: S(BAE) = S(BEC) = 1/2 S(ABC)(1) (vì có AE= EC = 1/2 AC và cung chiều cao hạ từ B xuống AC)
Tương tự ta có: S(GAE)= S(GEC)(2)
Cũng chứng minh tương tự ta có: S(ADB)= S(ADC)=1/2S(ABC) (3)
S(GDB)= S(GCD) (4)
Từ (1) (20 suy ra: S(BCE)= S(ADC)= 1/2 S(ABC)
=> S(BDG)= S(AGE) (cùng bớt SGECD)
Từ đó suy ra tiếp S(BDG)= S(AGE) = S(GEC)=S(ADC)
Suy ra S(GDC) = 1/2 (S(GCE) +S(GAE))= 1/2 S(GCA)
Mặt khác hai tam giác này chung chiều cao hạ từ C xuống AD nên Đáy GD= 1/2 GA( chứng minh đã xong)
S_ABD = S_ACE => S_BEG = S_CDG
S_BEG = S_AEG ; S_CDG = S_ADG => S_AEG = S_ADG
=> Đường cao hạ từ 2 đỉnh E & D xuống AG bằng nhau
=> S_AEM = S_ADM
Mà S_AEM = S_BEM ; S_ADM = S_CDM
=> S_BEM = S_MDC (1)
S_BEC = S_BDC (Vì cùng bằng 1/2 X S_ABC)
=> Đường cao hạ từ 2 đỉnh E & D xuống cạnh BC bằng nhau (2)
Từ (1) & (2) => MB = MC
Ta có: D là trung điểm của BC, E là trung điểm của AC
\(\Rightarrow\)AD và BE là hai đường trung tuyến của tam giác ABC
Mà giao điểm của hai đường trung tuyến trong tam giác là trọng tâm
\(\Rightarrow\)G là trọng tâm của tam giác ABC
\(\Rightarrow\)AG = 2GD