\(\widehat{A}=90^o\), AB = AC. Kẻ đường cao AH.

a) Chứng minh...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

a, \(\Delta AHB=\Delta AHC\left(ch-cgv\right)\Rightarrow HB=HC\) (2 cạnh tương ứng)

Theo đề bài tam giác ABC vuông cân tại A nên \(\widehat{ABH}=45^0\) và tính được \(\widehat{BAH}=45^0\)

Tam giác AHB có: \(\widehat{AHB}=90^0\) và \(\widehat{ABH}=\widehat{BAH}=45^0\)

\(\Rightarrow\Delta AHB\) vuông cân tại H \(\Rightarrow HA=HB\)

Vậy HA = HB = HC

b, Sửa lại đề bài: \(BD\perp d\)

Tam giác ABD vuông tại D(gt) \(\Rightarrow\widehat{ABD}+\widehat{BAD}=90^0\) (1)

Ta có: \(\widehat{BAD}+\widehat{BAC}+\widehat{CAE}=180^0\Rightarrow\widehat{BAD}+\widehat{CAE}=90^0\)  (2)\(\left(\widehat{BAC}=90^0\right)\) 

Từ (1) và (2) \(\Rightarrow\widehat{ABD}=\widehat{CAE}\)

\(\Delta ABD=\Delta CAE\left(c.g.c\right)\Rightarrow AD=CE\)( 2 cạnh tương ứng)

Mong bạn hiểu lời giải của mình. Chúc bạn học tốt.

1) Cho tam giác ABC vuông tại A, vẽ tia phân giác của \(\widehat{ABC}\)cắt AC tại D. Trên cạnh BC lấy M sao cho BA = BM.a) Chứng minh: Tam giác BAD = Tam giác BMDb) Chứng minh: DM vuông góc BCc) Trên nửa mặt phẳng bờ AB không chứa C vẽ tia song song với CA. Trên tia Bx lấy điểm K sao cho BK = AC. Chứng minh: AK vuông góc DMd) Trên tia BA lấy điểm N sao cho BN = BC. Chứng minh: 3 điểm M, D, N thẳng hàng.2) Cho tam giác ABC...
Đọc tiếp

1) Cho tam giác ABC vuông tại A, vẽ tia phân giác của \(\widehat{ABC}\)cắt AC tại D. Trên cạnh BC lấy M sao cho BA = BM.

a) Chứng minh: Tam giác BAD = Tam giác BMD

b) Chứng minh: DM vuông góc BC

c) Trên nửa mặt phẳng bờ AB không chứa C vẽ tia song song với CA. Trên tia Bx lấy điểm K sao cho BK = AC. Chứng minh: AK vuông góc DM

d) Trên tia BA lấy điểm N sao cho BN = BC. Chứng minh: 3 điểm M, D, N thẳng hàng.

2) Cho tam giác ABC có AB < AC. Trên tia AC lấy E sao cho: AE = AB. Gọi H là trung điểm của BE.

a) Chứng minh: AH là tia phân giác của \(\widehat{A}\)

b) Gọi D là giao của AH và BC; Chứng minh: BD = DE

c) Qua E vẽ đường thẳng song song với AD cắt BC tại M. Tính số đo \(\widehat{BEM}\)

d) Trên tia đối của tia BA lấy N sao cho: BN = CE. Chứng minh: 3 điểm E, D, N thẳng hàng

Mong các bạn giúp đỡ!

0
28 tháng 6 2020

A B C H D E 1 2 1 2 3 4

A) XÉT \(\Delta ABC\)VUÔNG TẠI A 

\(BC^2=AB^2+AC^2\left(PYTAGO\right)\)

THAY \(BC^2=3^2+4^2\)

          \(BC^2=9+16\)

          \(BC^2=25\)

\(\Rightarrow BC=\sqrt{25}=5\left(cm\right)\)

XÉT \(\Delta ABC\) CÓ

\(BC>AC>AB\left(5>4>3\right)\)

\(\Rightarrow\widehat{A}>\widehat{B}>\widehat{C}\)QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN

B) XÉT \(\Delta BAH\)\(\Delta BDH\)

BH LÀ CẠNH CHUNG

\(\widehat{H_2}=\widehat{H_1}=90^o\)

\(AH=DH\left(GT\right)\)

=>\(\Delta BAH\)=\(\Delta BDH\)(C-G-C)

=> AB = BD( ĐPCM)

C) XÉT \(\Delta BAH\)\(\Delta EDH\)

  \(BH=EH\left(GT\right)\)

\(\widehat{H_2}=\widehat{H_4}\left(Đ^2\right)\)

\(AH=DH\left(GT\right)\)

=>\(\Delta BAH\)=\(\Delta EDH\)(C-G-C)

=>\(\widehat{A_1}=\widehat{D_2}\)HAI GÓC TƯƠNG ỨNG 

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU

=> DE//AB

a) Xét ΔABD và  ΔACE có:

∠ADB = ∠AEC = 900 (gt)

BA = AC (gt)

∠BAC   (chung)

⇒ ΔABD =ΔACE (cạnh huyền – góc nhọn)

b) Có ΔABD =ΔACE  ⇒ ∠ABD = ∠ACE (hai góc tương ứng)

mặt khác: ∠ABC = ∠ACB (D ABC cân tại A )

⇒ ABC – ABD =ACB – ACE ⇒ HBC = HCB

⇒ ΔBHC là tam giác cân tại H

c) Có ΔHDC vuông tại D nên HD < HC

mà HB = HC (ΔBHC cân tại H)

⇒ HD < HB

d) Gọi I là giao điểm của BN và CM

* Xét ΔBNH và ΔCMH có:

BH = CH (ΔBHC cân tại H)

∠BHN = ∠CHM (đối đỉnh)

NH = HM (gt)

ΔBNH = ΔCMH (c.g.c) ⇒ ∠HBN = ∠HCM

* Lại có: ∠HBC = ∠HCB  (Chứng minh câu b)

⇒ ∠HBC + ∠HBN = ∠HCB + ∠HCM ⇒ ∠IBC = ∠ICB

⇒ IBC cân tại I ⇒ IB = IC   (1)

Mặt khác ta có:  AB =  AC (D ABC cân tại A)  (2)

HB = HC (D HBC cân tại H) (3)

* Từ (1); (2) và (3)

Þ 3 điểm I; A; H cùng nằm trên đường trung trực của BC

⇒ I; A; H thẳng hàng

⇒  các đường thẳng BN; AH; CM đồng quy

25 tháng 5 2019

                   Bài giải :

a) Xét ΔABD và  ΔACE có:

∠ADB = ∠AEC = 900 (gt)

BA = AC (gt)

∠BAC   (chung)

⇒ ΔABD =ΔACE (cạnh huyền – góc nhọn)

b) Có ΔABD =ΔACE  ⇒ ∠ABD = ∠ACE (hai góc tương ứng)

mặt khác: ∠ABC = ∠ACB (D ABC cân tại A )

⇒ ABC – ABD =ACB – ACE ⇒ HBC = HCB

⇒ ΔBHC là tam giác cân tại H

c) Có ΔHDC vuông tại D nên HD < HC

mà HB = HC (ΔBHC cân tại H)

⇒ HD < HB

d) Gọi I là giao điểm của BN và CM

* Xét ΔBNH và ΔCMH có:

BH = CH (ΔBHC cân tại H)

∠BHN = ∠CHM (đối đỉnh)

NH = HM (gt)

ΔBNH = ΔCMH (c.g.c) ⇒ ∠HBN = ∠HCM

* Lại có: ∠HBC = ∠HCB  (Chứng minh câu b)

⇒ ∠HBC + ∠HBN = ∠HCB + ∠HCM ⇒ ∠IBC = ∠ICB

⇒ IBC cân tại I ⇒ IB = IC   (1)

Mặt khác ta có:  AB =  AC (D ABC cân tại A)  (2)

HB = HC (D HBC cân tại H) (3)

* Từ (1); (2) và (3)

Þ 3 điểm I; A; H cùng nằm trên đường trung trực của BC

⇒ I; A; H thẳng hàng

⇒  các đường thẳng BN; AH; CM đồng quy

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: a) DC= \(\frac{1}{2}\)AB và DC // ACb) AD=MCc) MN // BC và MN =\(\frac{1}{2}\)BCBài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường...
Đọc tiếp

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: 

a) DC= \(\frac{1}{2}\)AB và DC // AC

b) AD=MC

c) MN // BC và MN =\(\frac{1}{2}\)BC

Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:

a) DE=BC

b) BC\(\perp\)DE tại H

c) AN = AM và AN\(\perp\)AM

Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:

a) BN = CA

b) góc BAC + góc DAE = 180 độ 

c) AM = \(\frac{1}{2}\)DE

Nhớ vẽ hình hộ mik nha :))

 

0