Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: ABCD là hình bình hành => AB // CD và AB = CD
mà E là trung điểm của AB ; F là trung điểm của CD
AE = EB = CF = DF (1)
vì AB // CD => EB // DF (2)
từ (1) và (2) => tứ giác DEBF là hình bình hành (đccm)
b) hình bình hành ABCD có:
AC cắt BD tại trung điểm của mỗi đường (1)
xét hình bình hành DEBF có EF cắt BD tại trung điểm mỗi đường (2)
từ (1) và (2) => AC ; BD ; EF đồng quy
c) gọi O là giao điểm của AC ; BD ; EF
xét \(\Delta EOM\) và \(\Delta NOF\) có:
góc EOM = góc NOF (đối đỉnh)
OE = OF
góc MEF = góc NFE (CE // BF)
=> tam giác EOM = tam giác NOF (g.c.g)
=> ME = NF
ta có: ME // NF
=> tứ giác EMFN là hbh (đccm)
chúc bạn học tốt!! ^^
564576767568768769535737476575678567856856876876697634524545346456457645765756567563
mình không biết cái đề nó có vấn đề gì ko chứ ko thề nào nó là hbh dc . nếu nó hình bh có ak vuông de nó sẽ laf hình thôi nhưng ko thề nào dc vì ao khong = ok lấy đâu ra hbh