\(\sqrt{5}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 2 2021

Kẻ AE vuông góc BC \(\Rightarrow ED=\dfrac{BD}{2}=1\Rightarrow AE=\sqrt{AD^2-ED^2}=2\)

Theo định lý phân giác: \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\Rightarrow\dfrac{CD}{AC}=\dfrac{2}{\sqrt{5}}\Rightarrow AC=\dfrac{CD\sqrt{5}}{2}\)

Pitago: \(AE^2+EC^2=AC^2\)

\(\Leftrightarrow AE^2+\left(ED+DC\right)^2=AC^2\)

\(\Leftrightarrow4+\left(1+DC\right)^2=\dfrac{5CD^2}{4}\)

\(\Leftrightarrow\dfrac{1}{4}CD^2-2CD-5=0\) \(\Rightarrow\left[{}\begin{matrix}CD=10\\CD=-2\left(loại\right)\end{matrix}\right.\)

25 tháng 2 2021

Link tham khảo : Cho tam giác ABC có các góc B và C là góc nhọn, đường phân giác AD. Biết AD AB = √5cm, BD =2cm. Tính độ dài DC. - Hoc24

AH
Akai Haruma
Giáo viên
5 tháng 2 2021

Hình vẽ:

undefined

AH
Akai Haruma
Giáo viên
5 tháng 2 2021

Lời giải:

Kẻ $AH\perp BC$. Vì $AD=AB$ nên $ABD$ là tam giác cân tại $A$. Do đó đường cao $AH$ đồng thời là đường trung tuyến, hay $H$ là trung điểm $BD$

$\Rightarrow HD=BD:2=1$ (cm)

Áp dụng định lý Pitago:

$AH^2=AD^2-HD^2=5-1=4$ (cm)

$AC^2=AH^2+HC^2=AH^2+(HD+DC)^2$

$\Leftrightarrow AC^2=4+(1+DC)^2=5+DC^2+2DC(1)$

Theo định lý tia phân giác ta cũng có:

$\frac{BD}{DC}=\frac{AB}{AC}\Leftrightarrow \frac{2}{DC}=\frac{\sqrt{5}}{AC}(2)$

Từ $(1);(2)\Rightarrow DC=10$ (cm)

9 tháng 7 2020

1)

A B H D c m n

Kẻ AH là đường cao của ABC

Ta có :\(S_{ABCD}=\frac{1}{2}.AH.BD ; S_{ADC}=\frac{1}{2}.AH.CD\)

\(\Rightarrow\frac{S_{ABC}}{S_{ADC}}=\frac{\frac{1}{2}.AH.BD}{\frac{1}{2}.AH.CD}=\frac{BD}{CD}\left(1\right)\)

\(\Delta ABC\)có AD là tia phân giác

\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\left(2\right)\)

Từ (1)(2) 

\(\Rightarrow\frac{S_{ABCD}}{S_{ACD}}=\frac{AB}{AC}=\frac{m}{n}\)

Vậy tỉ số của tam giác ABD và ACD là \(\frac{m}{n}\)

31 tháng 3 2019

A B C D E 6 H

a) BC = \(\sqrt{AB^2+AC^2}\)\(\sqrt{6^2+8^2}\)\(\sqrt{100}\)= 10 (theo định lí Pythagoras)

\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)\(\frac{CD}{BC}\)\(\frac{AD}{DC}\)\(\frac{AB}{BC}\)\(\frac{6}{10}\)\(\frac{3}{5}\).

b) Ta có : \(\widehat{ABE}\)\(\widehat{EBC}\)(BD là phân giác)

=> \(\Delta ABD\)\(\Delta EBC\)(gg)

=> \(\frac{BD}{BC}\)\(\frac{AD}{EC}\)<=>  BD.EC = AD.BC (đpcm).

c) Ta có : \(\Delta CHE\)\(\Delta CEB\)( 2 tam giác vuông có chung góc C )

=> \(\frac{CH}{CE}\)\(\frac{CE}{CB}\)<=>  CH.CB = CE2                                                     (1)

                \(\Delta CDE\)\(\Delta BDA\)(gg  (2 góc đối đỉnh))

                 \(\Delta BDA~\Delta BCE\) (câu b))

=> \(\Delta CDE~\Delta BCE\)

=> \(\frac{CE}{BE}\)\(\frac{DE}{CE}\)<=> BE.DE = CE2                                                        (2)

Từ (1) và (2) => CH.CB = ED.EB (đpcm).