K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\widehat{B}< \widehat{C}\)

nên AB>AC

Xét ΔABC có AB>AC

mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB>HC

b: Xét ΔDBC có HB>HC

mà HB là hình chiếu của DB trên BC

và HC là hình chiếu của DC trên BC

nên DB>DC

a: Xét ΔABC có AC>AB

mà HC,HB lần lượt là hình chiếu của AC,AB trên BC

nên HC>HB

b: Xét ΔDBC có HB<HC

mà HB,HC lần lượt là hình chiếu của DB,DC trên BC

nên DB<DC

a)Xét t/giác ABC có AB>AC

   ⇒  ACB>ABC(quan hệ giữa góc và cạnh đối diện)

b)  Ta có: AB > AC (gt)

 HB > HC (quan hệ giữa hình xiên và đường chiếu của chúng)

4 tháng 5 2017

tự vẽ hình nha!^^

1/a/ vì AB<AC(gt)\(\Rightarrow\)\(\widehat{B}< \widehat{C}\)(theo tính chất)

b)ta có:\(\widehat{BAH}+\widehat{AHB}+\widehat{B}=180\)độ

\(\widehat{CAH}+\widehat{AHC}+\widehat{C}=180\)độ

mà \(\widehat{B}< \widehat{C}\)(theo câu a)) và \(\widehat{AHB}=\widehat{AHC}=90\)độ

\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)\(\Rightarrow HB< HC\)(tính chất)

2/a/\(Xét\Delta ABIva\Delta HBIcó:\)

góc BAI=BHI=90 độ

BỊ chung;góc B1=góc B2

Vậy \(\Delta ABI=\Delta HBI\left(ch-gn\right)\)

b/ vì IA=IH(do tgiac ABI=tgiac HBI)

Vậy tam giác AIH cân tại I

c/Vì AB=AH(do tam giác BIA= tam giác BIH)

\(\Rightarrow\)tam giác BAH cân tại B

mà BỊ là đường phân giác nên suy ra cũng là đường trung trực (theo tính chất của các đường trong tam giác cân)

\(\Rightarrow\)BI là đường trung trực của đoạn thẳng AH(đpcm)

6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.

a: BH<AB

CK<AC

=>BH+CK<AB+AC

b: BH<BD

CK<CD

=>BH+CD<BD+CD=BC

21 tháng 2 2022

`Answer:`

undefined

`1.`

`\hat{BAH}=90^o-\hat{BAC}`

`\hat{CAH}=90^o-\hat{ACB}`

Do `\hat{ABC}>\hat{ACB}=>\hat{BAH}<\hat{CAH}(1)`

mà `BH,CH` lần lượt đối diện các `\hat{BAH},\hat{CAH}(2)`

Từ `(1)(2)=>BH<CH`

`2.`

`\hat{AMH}=90^o-\hat{MAH}`

`\hat{AMB}=180^o-90^o+\hat{MAH}=90^o+\hat{MAH}>90^o`

`\hat{ABH}` phụ `\hat{ABH}=>\hat{ABH}<90^o`

`=>\hat{AMB}>\hat{ABH}`

Mà `AM,AB` lần lượt đối diện các `\hat{ABM},\hat{AMB}=>AB>AM(3)`

Tương tự ta có:

`\hat{ABH}=90^o-\hat{BAH}`

`\hat{ABN}=180^o-90^o+\hat{BAH}=90^o+\hat{BAH}>90^o`

`\hat{ANB}` phụ `\hat{NAH}=>\hat{ANB}<90^o`

`=>\hat{ABN}>\hat{ANB}`

Mà `AN,AB` lần lượt đối diện với `\hat{ABN},\hat{ANB}=>AN>AB(4)`

Từ `(3)(4)` theo tính chất bắc cầu `=>AM<AB<AN`

21 tháng 2 2022

A B C H M N        a)  Ta có : \(90^o\)>\(\widehat{B}\)>\(\widehat{C}\) 

              =>  AC>AB (Quan hệ giữa góc và cạnh đối diện trong một          tam giác)

              => HC < BH (Quan hệ giữa các đường xiên và hình chiếu của chúng )              (ĐPCM)

       b) Ta có : M nằm giữa B và H

                => MH < BH

                => AM < AB  (Quan hệ giữa các đường xiên và hình chiếu của                           chúng)    (*)

             Vì điểm N nằm trên đường thẳng BC nhưng không thuộc đoạn BC nên ta xét hai trường hợp :

         TH1: N nằm bên phía điểm B.

           Suy ra : điểm B nằm giữa N và H

                        =>  NH > BH

                        =>  AN > AB (Quan hệ giữa các đường xiên và hình              chiếu của chúng )      (1)

          TH2: Điểm N nằm bên phía C

           Suy ra: Điểm C nằm giữa H và N                    => NH > CH

                   => AN > AC (Quan hệ giữa các đường xiên và hình               chiếu của chúng).

          Mà AB > AC   (câu a)

                     =>  AN > AB    (2)

            Từ 1 và 2 suy ra:    AN > AB      (**)

             Từ * và ** suy ra :  AM < AB < AN   (đpcm)

1: 

Xét ΔABD và ΔACE có

AB=AC

góc B=góc C

BD=CE

=>ΔABD=ΔACE

=>AD=AE

2:

a: H là trung điểm của DB

=>D thuộc tia đối của tia HB

=>D thuộc HC

b: góc KCD=góc DAH

góc DAH=góc CED

=>góc KCD=góc CED

Xét ΔCED vuông tại E và ΔCKD vuông tại K có

CD chung

góc ECD=góc KCD

=>ΔCED=ΔCKD

=>DE=DK