Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tam giác ABC có : ABC + ACB + BAC = 180 => ABC + ACB = 120
mà BD , CE lần lượt là phân giác của ABC , ACB => 2IBC + 2ICB = 120 <=> IBC + ICB = 60
Có : DIE+DIC = 180 ( kề bù ) mà DIC = IBC + ICB = 60 ( góc ngoài của tam giác IBC )
=> DIE = 120 và DIE + BAC = 180 => AEID nội tiếp
Cho tam giác nhọn ABC nội tiếp trong (O;R) có BD và CE là các đường cao. Cho góc A = 60 độ, tính theo R diện tích tứ giác OEAD
Có thể giải như sau:
Tam giác vuông ABD có ^BAD = 60o => AD = AB/2
Dễ thấy tg vuông ABD đồng dạng với tg vuông ACE => AD/AE = AB/AC => AD/AB = AE/AC => tg AED đông dạng tam giác ABC ( vì có chung góc A) => ED/BC = ADAB = 1/2 => ED = BC/2
Dễ tính được BC = RV3 => ED = RV3/2
Mặt khác : Vẽ đường kính AF => BF//CE (vì cùng _I_ với AB). Dễ thấy BCDE nội tiếp => ^BDE = ^BCE (cùng chắn cung BE) = ^CBF ( so le trong) = ^CAF (cùng chắn cung CF của (O) ) => AF _I_ DE ( vì đã có AD _I_ BD)
Vậy S(OEAD) = AO.ED/2 = R^2V3/4 => R = V(4SV3/3)
p/s:tham khảo
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
A B C D I M E x y
a) Trong tam giác ABC cóE là giao điểm 2 phân giác trong góc B và C nên AE là phân giác góc BAC
Khi đó AE và AD đều là phân giác trong của góc BAC
=> 3 điểm A,E,D thẳng hàng
b) Có: ACB+BCx =180
=> 1/2 ACB +1/2 BCx =90
=> DCB + BCE =90
=> DCE =90
Tương tự : DBE =90
Trong tứ giác BECD CÓ DBE +DCE =90+90=180
=> TỨ giác BECD nội tiếp
c) theo câu b thì tứ giác BECD nội tiếp nên
DCB =DEB ( 2 góc nội tiêp cung chắn cung BD)
Xét tam giác DIC và tam giác BIE có :
DCB=DEB (cmt)
DIC= BIE ( 2 góc đối đỉnh)
=> tam giác DIC đồng dạng với tam giác BIE
=>\(\frac{BI}{ID}\)=\(\frac{IE}{IC}\)
=> BI *IC= ID*IE
mình ghi lại câu a nhé
Vì E là giao điểm của 2 đường phân giác trong của góc B,C nên E cũng thuộc đường phân giac của góc A
=> AE là phân giác góc A
Vì D là giao điểm của 2 đường phân giác các góc ngoài của góc B,C nên ta có D cách đều 2 cạnh AB,AC
=> D thuộc đường phân giác góc A
=>AE,AD nhau
=> A,E,D thẳng hàng
a , vì bd và ce là đường cao của tam giác abc nên ta có góc bdc = 90 độ , góc ceb = 90 độ
xét tứ giác bced có góc bdc = góc ceb
=> tứ giác bced là tứ giác nội tiếp ( hai góc này cùng nhìn cạnh bc dưới 1 góc 90 độ )
b , ab.ed=ad.bc=> ab/bc=ad/ed
xét tam giác abc và tam giác ade
góc a chung
góc ade = góc ebc ( tính chất tứ giác nội tiếp góc ngoài bằng góc trong đối diện với góc đó
=> tam giác abc đồng dạng với ade
=> ab/bc = ad/de
=> ab.ed = ad.bc
c , còn phần này thì sorry bạn minh dùng nháp vẽ hình nên không có compa làm phần c