Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔBAD có BA=BD(gt)
nên ΔBAD cân tại B(Định nghĩa tam giác cân)
Suy ra: \(\widehat{BAD}=\widehat{BDA}\)(hai góc ở đáy)
b) Ta có: \(\widehat{CAD}+\widehat{BAD}=90^0\)(tia AD nằm giữa hai tia AB,AC)
\(\widehat{HAD}+\widehat{HDA}=90^0\)(ΔHAD vuông tại H)
mà \(\widehat{BAD}=\widehat{HDA}\)(cmt)
nên \(\widehat{CAD}=\widehat{HAD}\)
hay AD là tia phân giác của \(\widehat{HAD}\)
c) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))
Do đó: ΔAHD=ΔAKD(Cạnh huyền-góc nhọn)
Suy ra: AH=AK(hai cạnh tương ứng)
tự kẻ hình
AB = 6 (gt) => AB^2 = 6^2 = 36
AC = 8 (gt) => AC^2 = 8^2 = 64
=> AB^2 + AC^2 = 36 + 64 = 100
BC = 10 (gt) => BC^2 = 10^2 = 100
=> AB^2 + AC^2 = BC^2
=> AH^2 + BC^2 = AH^2 = AH^2 + AC^2 + AB^2
=> AH^2 + BC^2 > AB^2 + AC^2
=> AH + BC > AB + AC do AH; BC; AB; AC >0
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
hay AH là tia phân giác của góc BAC
b: Xét ΔEAH vuông tại E và ΔFAH vuông tại F có
AH chung
\(\widehat{EAH}=\widehat{FAH}\)
Do đó: ΔEAH=ΔFAH
Suy ra: HE=HF
hay ΔHEF cân tại H
c: Xét ΔACK và ΔABK có
AC=AB
\(\widehat{CAK}=\widehat{BAK}\)
AK chung
Do đó: ΔACK=ΔABK
Suy ra: \(\widehat{ACK}=\widehat{ABK}=90^0\)
=>BK\(\perp\)AB
hay BK//EH