Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N
Vì \(\Delta ABC\)có \(AB=AC\) nên cân tại A.
\(\Rightarrow\)Góc NBC = Góc MCB
\(AB=AC\Rightarrow\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow BM=CN\)
Xét \(\Delta BNC\)và \(\Delta CMB:\)
\(CN=BM\)( chứng minh trên )
Góc NBC = Góc MCB( chứng minh trên )
Chung cạnh BC
\(\Rightarrow\Delta BNC=\Delta CMB\)
Vậy \(\Delta BNC=\Delta CMB\)
a)
ta có: AB=AC suy ra 1/2 AB=1/2AC suy ra AN=NB=AM=MC
xét tam giác ABM và tam giác ACN có:
AB=AC
AM=AN(cmt)
A(chung)
suy ra tam giác ABM=ACN(c.g.c)
suy ra BM=CN
b)
ta có: I là trọng tâm cua tam giác ABC
ta có: MB=NC(theo câu a) suy ra 2/3MB=2/3NC suy ra IB=IC suy ra tam giac IBC cân tại I
c)
xét tam giác AIB và tam giác AIC có:
AB=AC
AI(chung)
IB=IC
suy ra tam giác AIB=AIC(c.c.c)
suy ra BAI=CAI
suy ra AI là phân giác của góc A
A B C N M
Xét \(\Delta ABC\) có :
\(AB=AC\) ( gt )
\(\Rightarrow\Delta ABC\) cân tại \(\widehat{A}\)
\(\Rightarrow\widehat{B}=\widehat{C}\)
Ta có : \(AB=AC\Rightarrow\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow BM=CN\)
Xét \(\Delta BNC\) và \(\Delta CMB\) có :
\(CN=BM\left(cmt\right)\)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
\(AC\) là cạnh chung
Do đó 2 tam giác bằng nhau.
Vậy ...................
M là trung điểm của AC
=> AM = MC = AC/2
N là trung điểm của AB
=> AN = NB = AB/2
mà AC = AB (tam giác ABC cân tại A)
=> MC = NB
Xét tam giác BNC và tam giác CMB có:
NB = MC (chứng minh trên)
NBC = MCB (tam giác ABC cân tại A)
BC là cạnh chung
=> Tam giác BNC = Tam giác CMB (c.g.c)