Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Py-ta-go vào tam giác ABH vuông tại H, ta có:
AH²+BH²=AB²
AH²=AB²−BH²
AH²=52−32
⇒AH²=16
⇒AH=4(cm)
Ta có:
BH+HC=BC
⇒HC=BC−BH
⇒HC=8−3
⇒HC=5(cm)
Áp dụng định lí Py-ta-go vào tam giác AHC vuông tại H, ta có:
AH²+HC²=AC²
42+52=AC²
⇒AC²=41
⇒AC=√41(cm)
Vậy HC = 5 cm, AC = √41 cm
#Tuyên#
Hình bạn tự vẽ nhé
AH vuông góc với BC => Tam giác AHB và tam giác AHC vuông tại H
Áp dụng định lí Pytago cho tam giác vuông AHB ta được :
AB2 = AH2 + BH2
BH = \(\sqrt{AB^2-AH^2}=\sqrt{5^2-4^2}=3cm\)
Áp dụng định lí Pytago cho tam giác vuông AHC ta được :
AC2 = AH2 + HC2
\(AC=\sqrt{AH^2+HC^2}=\sqrt{4^2+12^2}=12,649...\approx12,65cm\)
H thuộc BC => BC = BH + HC = 3 + 12 = 15cm
Chu vi hình tam giác ABC = AB + AC + BC = 5 + 12, 65 + 15 = 32, 65cm
#Sai thì bỏ qua nhé xD
AD định lý Pytago vào trong tam giác ABH vuông tại H ta có: BH2 = AB2 - AH2=25-16=9
Suy ra BH=3(cm)
Ta có BC=BH+CH =12+3=15(cm)
AD định lý Pytago vào trong tam giác AHC vuông tại H ta có:AC2=AH2+HC2=42+122=160
Suy ra:AC=12,65(cm;tương đương)
Vậy chu vi tam giác ABC là: 5+15+12.65=32.65(cm)
Câu 1:
Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
202 = AH2 + 162
400 = AH2 + 256
AH2 = 400 - 256
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
AC2 = 122 + 52
AC2 = 144 + 25
AC2 = 169
AC = \(\sqrt{169}\)= 13 (cm)
Vậy AH = 12 cm
AC = 13 cm
Bài 2:
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
152 = AH2 + 92
225 = AH2 + 81
AH2 = 225 - 81
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHB vuông tại, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
AB2 = 122 + 52
AB2 = 144 + 25
AB2 = 169
AB = \(\sqrt{169}\)= 13 (cm)
Vậy AB = 13 cm
a/
∆ABC vuông tại A, AH, vuông góc BC
=> AB.AH = HB.AC
=> AB = 15Ta có: BC^2 = AB^2 + AC^2=> BC = 25=> HB = BC - BH = 25-9 = 16
a) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AH^2+BH^2=AB^2\)
\(\Leftrightarrow AB^2=9^2+12^2=225\)
hay AB=15(cm)
Vậy: AB=15cm
Vẽ hình ra thì nó " siêu to khổng lồ " lắm :)
Ta có : BC = BH + HC = 9 + 16 = 25cm
Áp dụng định lí Pytago cho tam giác vuông ABC có :
BC2 = AB2 + AC2
AB = \(\sqrt{25^2-20^2}=15cm\)
Áp dụng định lí Pytago cho tam giác vuông ABH có :
AB2 = BH2 + AH2
AH = \(\sqrt{15^2-9^2}=12cm\)
Vậy AB = 15cm , AH = 12cm
a)ta co : AB^2 + AC^2 = 20^2 +15^2 = 400 + 225 = 625 (cm)
BC = 25^2 = 625 (cm)
=> điều phải chứng minh
b) ta co : HC^2+HA^2 =AC^2
CH^2 = 15^2-12^2= 81cm
=> CH = 9cm
Lai co :
AH^2+BH^ = AB^2
12^2+BH^2 =20^2
144 + BH^2 = 400
BH^2 =256
=> BH =16cm
A B C H
Tam giác AHC vuông tại H ( do AH \(⊥\)BC )
=> AH2 + CH2 = AC2 ( định lý Pytago )
=> 42 + CH2 = 52
=> 9 + CH2 = 25
=> CH2 = 16
=> CH = 4 cm ( CH > 0 )
Ta có: CH + BH = BC
=> 4 + BH = 9
=> BH = 5 cm
Tam giác AHC vuông tại H ( do AH\(⊥\)BC )
=> AH2 + CH2 = AC2 ( định lý Pytago )
=> 42 + CH2 = 52
=> 16 + CH2 = 25
=> CH2 = 9
=> CH = 3 cm ( CH > 0 )
Ta có: CH + BH = BC
=> 3 + BH = 9
=> BH = 6 cm
Tam giác ABH vuông tại H ( do AH\(⊥\)BC )
=> AH2 + BH2 = AB2 ( định lý Pytago )
=> 42 + 62 = AB2
=> 16 + 36 = AB2
=> AB2 = 52
=> AB = \(\sqrt{52}\)cm ( AB > 0 )
Xin lỗi bạn nhé, bài trên mình chưa để ý đề bài và làm sai, mình làm lại bài này, bạn vẫn dùng hình ở trên nha!
=> AB2 =