Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi S là diện tích tam giác
\(a+h_a=b+h_b\)
\(\Leftrightarrow a+\dfrac{2S}{a}=b+\dfrac{2S}{b}\)
\(\Leftrightarrow\left(a-b\right)+2S\left(\dfrac{1}{a}-\dfrac{1}{b}\right)=0\)
\(\Leftrightarrow\left(a-b\right)-\dfrac{2S\left(a-b\right)}{ab}=0\)
\(\Leftrightarrow\left(a-b\right)\left(1-\dfrac{2S}{ab}\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(ab-2S\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\ab=2S\end{matrix}\right.\)
Nếu ab = 2S thì tam giác ABC vuông. Như vậy khi chứng minh tương tự thì tam giác ABC có 2 góc vuông (vô lí).
Vậy a = b
Tương tự b = c
Suy ra a = b = c => đpcm
Tử số cũng biến thiên theo ha, hb, hc ...Suy luận được như trên chỉ khi Tử số là một số A không đổi.
Gọi S là diện tích tam giác, r là bánh kính đường tròn nội tiếp
Ta có
ha=2S/a =r(a+b+c)/a
=> ha^2 + hb^2 + hc^2 = r^2(a+b+c)^2 * (1/a^2+1/b^2+1/c^2)}
=> T = (a+b+c)^2/(ha^2+hb^2+hc^2) =
=1/r^2/(1/a^2+1/b^2+1/c^2)
Ta c/m (1/a^2+1/b^2+1/c^2) <=1/4r^2 (*)
=> T<=1/4
=> Max(T) = 1/4 Khi tam giác đều
c/m bất đẳng thức (*)
S = pr
S= √p(p-a)(p-b)(p-c)
=> pr= √p(p-a)(p-b)(p-c)
=> (pr^2) = (p-a)(p-b)(p-c)
=> 1/r^2 = p/(p-a)(p-b)(p-c) = 1/((p-a)(p-b) + 1/(p-b)(p-c) + 1/(p-a)(p-c)
=> 1/4r^2 = 1/[a^2 - (b-c)^2] + 1/[b^2 - (a-c)^2] + 1/[c^2 - (b-a)^2] >= 1/a^2 + 1/b^2 + 1/c^2
=> 1/4r^2>= 1/a^2 + 1/b^2 + 1/c^2
=> (1/r^2)/ 1/a^2 + 1/b^2 + 1/c^2 >= 1/4
=> Dấu bằng xảy ra khi ha = hb = hc => Khi đó ABC là tam giác đều