Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=căn 12^2+16^2=20cm
Xét ΔABC có AD là phân giác
nên BD/DC=AB/AC=3/4
=>BD/3=DC/4=(BD+DC)/(3+4)=20/7
=>BD=60/7cm; DC=80/7cm
Xét ΔCAB có ED//AB
nên ED/AB=CD/CB=4/7
=>ED/12=4/7
=>ED=48/7cm
b: S ABC=1/2*12*16=96cm2
BD/BC=3/7
=>S ABD/S ABC=3/7
=>S ABD=288/7cm2
Xét ΔABC có
AE là đường phân giác góc ngoài ứng với cạnh BC(gt)
nên \(\dfrac{EB}{EC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{EB}{EC}=\dfrac{16}{32}=\dfrac{1}{2}\)
\(\Leftrightarrow EB=\dfrac{1}{2}\cdot EC\)
mà E,B,C thẳng hàng
nên B là trung điểm của EC(đpcm)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: BC=căn 12^2+16^2=20cm
c: AD là phân giác
=>BD/CD=AB/AC=3/4
=>S ABD/S ACD=3/4
d: BD/CD=3/4
=>BD/3=CD/4
mà BD+CD=10
nên BD/3=CD/4=10/7
=>BD=30/7cm; CD=40/7cm
a) Áp dụng định lý Pi-ta-go vào \(\Delta\)vuông ABC có :
\(AB^2+AC^2=BC^2\Leftrightarrow BC=20\left(cm\right)\)
Do AD là phân giác \(\widehat{A}\)theo tính chất đường phân giác , ta có :
\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}\)
\(\Rightarrow\frac{BD}{BD+CD}=\frac{3}{3+4}\Rightarrow\frac{BD}{BC}=\frac{3}{7}\)
\(\Rightarrow BD=\frac{3}{7}BC=\frac{60}{7}\)
\(\Rightarrow DC=BC-BD=\frac{80}{7}\)
b) AH là đường cao \(\Delta\)vuông ABC nên :
\(S_{\Delta ABC}=\frac{AH.BC}{2}=\frac{AB.AC}{2}\)
\(\Rightarrow AH=\frac{AB.C}{BC}=\frac{48}{5}\left(cm\right)\)
Ta có :
\(BH^2=AB^2-AH^2\Rightarrow BH=\frac{36}{5}\left(cm\right)\)
\(\Rightarrow DH=BD=BH=\frac{48}{35}\left(cm\right)\)
\(AD^2=DH^2+AH^2\Rightarrow AD=\frac{48\sqrt{2}}{7}\left(cm\right)\)
Khi xét ΔABC có
AE là đường phân giác góc ngoài ứng với cạnh BC(gt)
nên:\(\dfrac{EB}{EC}\)=\(\dfrac{AB}{AC}\)(Ta có tính chất đường phân giác của hình tam giác)
⇔\(\dfrac{EB}{EC}=\dfrac{16}{32}=\dfrac{1}{2}\)
⇔\(EB=\dfrac{1}{2}.EC\)
Nhưng \(E,B,C\) thẳng hàng
⇒ \(B\) là trung điểm của \(EC\)(đpcm)
a) Xét ΔABC có
AE là đường phân giác góc ngoài tại đỉnh A(gt)
nên \(\dfrac{EB}{EC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác góc ngoài của tam giác)
\(\Leftrightarrow\dfrac{EB}{EC}=\dfrac{16}{32}=\dfrac{1}{2}\)
\(\Leftrightarrow EB=\dfrac{EC}{2}\)
mà E,B,C thẳng hàng(gt)
nên B là trung điểm của EC(đpcm)
b) Xét ΔABC có
AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)
⇔\(\dfrac{BD}{16}=\dfrac{CD}{32}\)
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{16}=\dfrac{CD}{32}=\dfrac{BD+CD}{16+32}=\dfrac{BC}{48}=\dfrac{21}{48}=\dfrac{7}{16}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{16}=\dfrac{7}{16}\\\dfrac{CD}{32}=\dfrac{7}{16}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=7\left(cm\right)\\CD=14\left(cm\right)\end{matrix}\right.\)
Ta có: EB=BC(B là trung điểm của EC)
mà BC=21cm(gt)
nên EB=21cm
Ta có: EB+BD=ED(B nằm giữa E và D)
nên ED=21+7
hay ED=28(cm)
Vậy: DE=28cm
a)
Xét tam giác BAC vuông tại A và tam giác BMN vuông tại M có:
\(\widehat{BAC}\)=\(\widehat{BMN}\)
=> Tam giác BAC ᔕ Tam giác BMN (g-g)
=> BA/BM=BC/BN
=> BN=BM.\(\dfrac{BC}{BA}\)=18.\(\dfrac{20}{12}\)=30cm
b)
Xét tam giác PAN vuông tại A và tam giác PMC vuông tại M có
\(\widehat{APN}\)=\(\widehat{MPC}\) (đối đỉnh)
=> Tam giác PAN ᔕ Tam giác PMC (g-g)
=> \(\dfrac{PA}{PM}\)=\(\dfrac{PN}{PC}\)
=> PA.PC=PM.PN (đpcm)