\(S\ge\frac{\sqrt{3}}{3}\le...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2016

A B C D E F

Gọi AD = ha , BE = hb , CF = hlần lượt là các đường cao của tam giác ABC

Ta có : \(h_b\le1,h_c\le1\)

Không mất tính tổng quát, ta giả sử \(\widehat{C}\le\widehat{B}\le\widehat{A}\). Ta xét hai trường hợp :

  • Với tam giác ABC có ba góc nhọn, khi đó \(\widehat{C}\le60^o,\widehat{A}\ge60^o\)

Ta có : \(S_{\Delta ABC}=\frac{1}{2}c.h_c=\frac{1}{2}.\frac{h_b.h_c}{sinA}\le\frac{1}{2sin60^o}=\frac{\sqrt{3}}{3}\)

  • Với tam giác ABC không phải là tam giác có ba góc nhọn , khi đó \(\widehat{A}\ge90^o\)

 ta có : \(S_{\Delta ABC}\le\frac{1}{2}h_c.c=\frac{h_bh_c}{2sinA}\le\frac{1}{2sin90^o}=\frac{1}{2}< \frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)

Bài 1:Giải pt(không dùng máy tính)a)\(x=\sqrt[3]{4x^2-x-6}\)b)\(\sqrt{x}^3=\left(\sqrt{x}-4\right)^2\)c)\(x^4-x^2+1=-x^2+4x-2\)Bài 2:Cho f(x)=(a-89)(a-90)x+1 Biết a=\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2019}}\)Cho \(m=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2020\sqrt{2019}+2019\sqrt{2020}}\)      \(n=\sqrt[3]{\sqrt{10}-\sqrt{3}}\)So sánh \(f\left(m\right)\)và \(f\left(n\right)\)Bài 3.Cho...
Đọc tiếp

Bài 1:Giải pt(không dùng máy tính)

a)\(x=\sqrt[3]{4x^2-x-6}\)

b)\(\sqrt{x}^3=\left(\sqrt{x}-4\right)^2\)

c)\(x^4-x^2+1=-x^2+4x-2\)

Bài 2:Cho f(x)=(a-89)(a-90)x+1 

Biết a=\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2019}}\)

Cho \(m=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2020\sqrt{2019}+2019\sqrt{2020}}\)

      \(n=\sqrt[3]{\sqrt{10}-\sqrt{3}}\)

So sánh \(f\left(m\right)\)và \(f\left(n\right)\)

Bài 3.Cho (d):\(y=\left(m^2+1\right)x-3m^2+1\)(m là tham số)

Lấy N(-1;7).Kẻ NH vuông góc với (d) ở H sao cho NH=5 cm.

a)Tìm m

b)Gọi d1;d2;...;d2019 đồng quy với NH tại 1 điểm thuộc đoạn NH.Gọi h1;h2;...;h2019 lần lượt là khoảng cách từ O đến d1;d2;...;d2019.

Tìm max của h1+h2+...+h2019.

Bài 4:Cho tam giác ABC nhọn.AH vuông BC ở H.Phân giác BM của góc ABC (M thuộc AC).Kẻ CE vuông AB ở E.CE cắt BM ở l.AH cắt BM ở F.CMR:BM.BI.BA=BC.BH.BK

Bài 5:Cho tam giác ABC nhọn.CMR:tanA+tanB+tanC=tanA.tanB.tanC.

Bài 6:Cho 2005 điểm thuộc cùng 1 mặt phẳng(không có điểm nào trùng nhau) sao cho trong 3 điểm bất kì ta luôn tìm được 2 điểm có khoảng cách nhỏ hơn 25 cm.CMR tồn tại 1 đường tròn bán kính 25 cm chứa ít nhất 1003 điểm trên

 

0
7 tháng 8 2018

bài này mk ch hk ạ ! 

hì hì 

???