K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2018

Hình tự vẽ nha !!!hihi

a, E, F cùng nhìn BC dưới 1 góc 90 độ => tứ giác BFEC nội tiếp.

F, E cùng nhìn AH dưới 1 góc 90 độ => tứ giác AEHF nội tiếp. => góc EHC = góc BAC ( cùng bù với EHF )

b, Xét tam giác ABE và tam giác CHE có :

góc BAE = góc EHC

góc BEA = góc HEC ( = 90 độ )

Do đó tam giác ABE đồng dạng với tam giác CHE ( gg )

=> \(\dfrac{AE}{HE}\) = \(\dfrac{BE}{CE}\) => EA . EC = EH . EC

c, Chứng minh tương tự như câu a,

Ta được tứ giác BFHD => góc ABD = góc FDA

tứ giác DHEC => góc ADE = góc FCA

Ta lại có góc ABE = góc FCA vì cùng phụ với góc BAC

=> góc FDA = góc ADE

=> AD là phân giác của góc FDE

Chứng minh tương tự : FC là phân giác của góc DFE

EB là phân giác của góc DEF

=> H là tâm đường tròn mội tiếp tam giác DEF

8 tháng 5 2018

@Phùng Khánh LinhNguyễn Trần Diệu LinhNgô Lê DungNhã Doanh

duongtiendungMickey ChuộtDung PhạmHoàng Anh Thư

12 tháng 4 2016

a, E, F cùng nhìn BC dưới 1 góc 90 => tứ giác BFEC nội tiếp

cmtt F,E cung nhìn AH dưới 1 góc 90 => tứ giác AEHF nội tiếp =>góc EHC = góc BAC ( cùng bù với EHF)

b, Xét tam giác ABE và tam giác CHE có 

   góc BAC = góc EHC 

   góc BEA = góc CEH  = 90

=>tam giác BAE đồng dạng với tam giác CHE(gg) =>AE/HE=BE/CE=> EA.EC=EH.EC

c,cmtt câu a, ta được tứ giác BFHD =>góc ABE = góc FDA

                       tứ giác DHEC nội tiếp =>góc ADE = góc FCA

Lại có góc ABE = góc FCA vì cùng phụ với góc BAC => góc FDA=góc ADE => AD là phân giác của góc FDE 

cmtt =>FC và EB là phân giác của góc DFE và DEF 

=> H là tâm đường tròn nội tiếp tam giác DEF

loading...  loading...  

27 tháng 3 2023

siêu phẩm của chữ :)) dù vẫn đọc đc nhưng .... 

18 tháng 5 2018

a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800

=> Tứ giác BEHF nội tiếp.

b, Xét tứ giác AFEC có :

góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)

=> Tứ giác AFEC nội tiếp

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

b; góc ABD=1/2*180=90 độ

=>BD vuông góc AB

=>BD//CH

góc ACD=1/2*180=90 độ

=>CD vuông góc AC

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

=>BHCD là hbh

=>BC cắt HDtại trung điểm của mỗi đường

=>H,M,D thẳng hàng

a: Xét tứ giác BDHF có 

\(\widehat{BDH}+\widehat{BFH}=180^0\)

Do đó: BDHF là tứ giác nội tiếp

Xét tứ giác BCEF có

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BCEF là tứ giác nội tiếp

b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB∼ΔAFC

Suy ra: AE/AF=AB/AC

hay \(AE\cdot AC=AB\cdot AF\)

6 tháng 11 2015

Tự vé hình nhé.

 Gọi M là trung điểm của BC

=> ME là đường trung tuyến ứng với cạnh huyền của tam giác vuông EBC => ME=MB=MC  (1)

=> MF ...........................................................................................FBC => MF=MB=MC  (2)

(1)(2) => ME=MF=MB=MC

=> 4 điểm E,F,B,C cùng thuộc dường tròn tâm M đường kính BC

b, Đường cao của đường tròn là gì hả bạn??

Tích cho mình nhé

Tý Giải tiếp nếu đè bài đúng

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn nàyb) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hànhc) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABCBài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt...
Đọc tiếp

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và  (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)

Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình

0