Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thực sự là mình không biết vẽ hình
Chứng minh
a, Xét \(\Delta ABE\) và \(\Delta DBE\) có
BE chung
\(\widehat{BAE}=\widehat{BDE}\) (=1v)
BA = BD (gt)
\(\Rightarrow\Delta ABE=\Delta DBE\left(ch-cgv\right)\)
b, \(\Delta ABE=\Delta DBE\) (câu a )
\(\Rightarrow\widehat{ABE}=\widehat{DBE}\) (hai gó tương ứng)
\(\Rightarrow EA=ED\) (hai cạnh tương ứng) (1)
mà \(\Delta EDC\) vuông tại D
\(\Rightarrow EC>ED\) (2)
Từ (1) và (2) \(\Rightarrow EC>EA\)
Gọi N là giao điểm của AD và BE
Xét \(\Delta ABN\) và \(\Delta DBN\) có :
BA = BD (gt)
\(\widehat{ABN}=\widehat{DBN}\) (c/m trên)
BN chung
\(\Rightarrow\Delta ABN=\Delta DBN\) (c.g.c)
\(\Rightarrow AN=ND\) (hai cạnh tương ứng) (3)
và \(\widehat{ANB}=\widehat{DNB}\) (hai góc tương ứng)
mà \(\widehat{ANB}+\widehat{DNB}=180^O\)
\(\Rightarrow\widehat{ANB}=\widehat{DNB}\) (=1v) (4)
Từ (3) và (4) \(\Rightarrow BE\) là đường trung trực của AD
a) xét 2 tam giac vuong ABE va DBE co
AB = BD (gt)
BE canh chung
suy ra: tam giac ABE = tam giac DBE (ch-cgv)
b) tu cau a) Tam giac ABE = tam giac DBE
Suy ra :AE = DE (2 canh tuong ung) (1)_
trong tam giác EDC vuông tại D
suy ra : EC > DE (canh huyen lon hon cach goc vuong ) (2)
Tu (1) va (2) suy ra: EC >EA
Ta co : AE=ED (cmt)
suy ra: E thuộc đường trung trực của AD (3)
ta có:AB=BD(gt)
suy ra: B thuoc duong trung truc AD (4)
tu (3) va (4) suy ra: BE la duong trung truc cua AD
A B C E D M
A B C D
Xét \(\bigtriangleup ABC\), có:
\(\widehat{A} + \widehat{B} + \widehat{C}= 180^{\circ}\)
\(80^{\circ} + 70^{\circ} + \widehat{C}= 180^{\circ}\)
\(150^{\circ} + \widehat{C}= 180^{\circ}\)
\(=> \widehat{C}= 180^{\circ} - 150^{\circ}= 30^{\circ}\)
Ta có: \(\widehat{DAC}=\frac{\widehat{A}}{2}= \frac{80^{\circ}}{2}= 40^{\circ}\)
Xét \(\bigtriangleup ADC\), có:
\(\widehat{DAC} + \widehat{C} + \widehat{ADC}= 180^{\circ}\)
tới đây pn thế số vô tính nhé
Chúc bạn học tốt
Này phạm nhất duy , chắc có lẽ bạn chưa học , nếu \(\Delta\)ABD cân ( vì AD = AB ) mà AK là đường phân giác của tam giác đó thì \(\Rightarrow\) AK là đường cao , đường trung tuyến , đường trung trực của \(\Delta\)ABD
A B C E D 1 1 1 1
Giải:
Gọi BE cắt CE tại I
Ta có: \(\widehat{B_1}+\widehat{A}=90^o\left(\widehat{D_1}=90^o\right)\)
\(\widehat{C_1}+\widehat{A}=90^o\left(\widehat{E_1}=90^o\right)\)
\(\Rightarrow\widehat{B_1}=\widehat{C_1}\)
Xét \(\Delta ABD,\Delta ACE\) có:
\(\widehat{B_1}=\widehat{C_1}\left(cmt\right)\)
\(\widehat{D_1}=\widehat{E_1}=90^o\)
BE = CE ( gt )
\(\Rightarrow\Delta ABD=\Delta ACE\left(g-c-g\right)\)
\(\Rightarrow AB=AC\) ( 2 cạnh t/ứng )
\(\Rightarrow\Delta ABC\) cân tại A ( đpcm )
Vậy...
A B C D E Xét tam giác DCB và tam giác EBC, có:
\(\widehat{CBD}=\widehat{EDB}=90độ\) (BD và CE là 2 đường cao của tam giác AB)
BC là cạnh chung
BD = CE (gt)
\(\Rightarrow\Delta DCB=\Delta EBC\)